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ABSTRACT 

“FORECASTING OF WATER TABLE FLUCTUATIONS FOR 

PRIYADARSHINI WATERSHED USING ARTIFICIAL NEURAL 

NETWORK” 

By 
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Department of Soil and Water Conservation Engineering, 
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Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli 

Dist- Ratnagiri, Maharashtra 

2019 
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 Groundwater is an important natural resource essential for sustenance of life. Over 

98% of the freshwater on the Earth lies below its surface. It is located below the soil surface 

and largely contained in interstices of bedrocks, sands, gravels, and other interspaces through 

which precipitation infiltrates and percolates into the underground aquifers due to gravity. The 

total amount of water in the world is 1.4 billion km3. 97.5% of these waters are in the oceans 

and the seas and 2.5% is in fresh water. Sweet waters; 0.3% is in lakes and rivers, 30.8% in 

ground water, soil necropsy and marsh, 68.9% in the form of ice and permanent snow. 

Groundwater is one of the major sources of supply for domestic, industrial and agricultural 

purposes.  

 The weekly Rainfall data, Temperature data, Solar data, Water level data and 

Permeability data of 9 years were used. Artificial Neural Network is an information processing 

paradigm that is inspired by the way biological nervous systems, such as the brain, The 

network is composed of a large number of highly interconnected processing elements called 

as neuron.  

 They typically consist of hundreds of simple processing units which are wired together 

in a complex communication network. Each unit or node is a simplified model of real neuron 

which sends off a new signal or fires if it receives a sufficiently strong input signal from the 

other nodes to which it is connected, learning in this system involves the adjustment between 

neurons through synaptic connection. In this study feed-forward neural networks architecture 

has been used in predicting weekly water table depths. In this study, sensitivity analysis has 
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been done to measure relative importance of each input variable for precisely predicting 

groundwater table fluctuations. 

  Sensitivity analysis is done by removing one input parameter at a time from the model 

and testing its performance by comparing with original model. Considering training, 

validation and testing period and all the statistics, it is difficult to say which algorithm is better 

among the two selected for study. Because there was a lot of variation in all the statistics 

among the two selected algorithms for training, validation and testing period. But considering 

the testing period of all the nine wells it was found that LM algorithm was better than CG for 

wells i.e., well 1 (2-9-1),  well 2 (2-9-1), well 3 (1-8-1), well 4 (1-6-1), well 5 (2-9-1), well 6 

( 1-9-1), well 8( 2-9-1) while CG algorithm was better than LM for wells i.e., well 7 (2-5-1) 

and well 9 (3-5-1) So these algorithms for particular well were selected for sensitivity analysis.  

As the results found were based on trial and error methods Levenberg- Marquardt (LM) 

algorithm provides better results than Conjugate Gradient algorithm. 

 Levenberg- Marquardt (LM) best results for  ANN network architecture of model for  

well 1 (2-9-1), well 2 (2-9-1), well 3(1-8-1), well 4(1-6-1), well 5(2-9-1), well 6 (1-9-1), well 

7 (3-5-1), well 8 (2-9-1), well 9 (2-9-1).The predicted water level trend followed the observed 

trend closely, showing the accuracy of the network. In present study, results were found and 

based on sensitivity analysis models selected and their statistics for all the nine wells. It was 

observed that selected algorithms predicted the water table depths in a better way in terms of 

its performance statistics.  

 The values of R for LM and CG were found to be 0.836 and 0.743, respectively. The 

observed values of RMSE for LM and CG were found to be 0.100 and 0.101, respectively. 

Similarly, the value of E for LM and CG were found to be -376.40 and      -20.88, respectively. 

The above result concludes Levenberg-Marquardt predicts the water table depth better than 

Conjugate Gradient. 

 

(Keywords : ANN, Sensitivity analysis, Levenberg-Marquardt, Conjugate Gradient) 
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I. INTRODUCTION. 

 

1.1 General 

 Groundwater is an important natural resource essential for sustenance of life. 

Over 98% of the freshwater on the Earth lies below its surface. It is located below the 

soil surface and largely contained in interstices of bedrocks, sands, gravels, and other 

interspaces through which precipitation infiltrates and percolates into the underground 

aquifers due to gravity. (Wagh et.al 2014). The total amount of water in the world is 

1.4 billion km3. 97.5% of these waters are in the oceans and the seas and 2.5% is in 

fresh water. Sweet waters; 0.3% is in lakes and rivers, 30.8% in ground water, soil 

necropsy and marsh, 68.9% in the form of ice and permanent snow. It is understood 

that the amount of available fresh water that humans can easily use because of the fact 

that 90% of the fresh water resources are so small and in the underground. (Ünes et.al 

2017). 

The water resource potential or annual water availability of the country in terms 

of natural runoff (flow) in rivers is about 1,869 Billion Cubic Meter (BCM)/year. 

However, the usable water resources of the country have been estimated as 1,123 

BCM/year. This is due to constraints of topography and uneven distribution of the 

resource in various river basins, which makes it difficult to extract the entire available 

1,869 BCM/year.  

Out of the 1,123 BCM/year, the share of surface water and ground water is 690 

BCM/year and 433 BCM/year, respectively. Setting aside 35 BCM for natural 

discharge, the net annual ground water availability for the entire country is 398 BCM.  

The overall contribution of rainfall to the country’s annual ground water 

resource is 68% and the share of other resources, such as canal seepage, return flow 

from irrigation, recharge from tanks, ponds and water conservation structures taken 

together is 32%. Due to the increasing population in the country, the national per capita 

annual availability of water has reduced from 1,816 cubic metre in 2001 to 1,544 cubic 

metre in 2011.2 This is a reduction of 15%. (Suhag, 2016). Maharashtra, the third 

largest state in India has a total geographical area of 3, 07,762 sq km and lies between 

latitudes of 15°45’ and 22° 00’ N and longitudes of 73° 00’ and 80° 59' E in the west-

central part of India abutting on the Arabian Sea. Maharashtra is one of the most well 

endowed States in the country in respect of rainfall, but it may soon become a State 
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where large parts of it face perennial water shortage an overwhelming population of 

rural Maharashtra and to some extent urban population is dependent on groundwater 

for drinking purposes. The availability of groundwater is extremely uneven, both in 

space, time and depth. The uneven distribution of groundwater in the State can be 

mainly attributed to highly heterogeneous lithology and variability and regional 

variation of rainfall .Large areas of Maharashtra are occupied by hard rocks and because 

of variations in their basic characteristics, physiography and variability in the rainfall, 

there are limitations on the availability of groundwater. The total rechargeable 

groundwater resource in the State is computed as 35732.2MCM and the Net ground 

water availability is 33806.46MCM. Out of these, 0.17 MCM is withdrawn for different 

uses viz irrigation, domestic and industry etc, 190.332 MCM is earmarked for domestic 

and industrial requirement and the remaining is available for future irrigation. The pre-

monsoon decadal water level trend, shows a rising trend, up to 0.1 m/year recorded in 

37 % of the wells and covering about 1,16,010 sq km of the State during the past decade 

2007-2016. Whereas, rising trend of > 0.1 m/year is observed only in 1103 sq km area 

of the State. The declining trend of pre-monsoon water level was observed in 62 % of 

the wells covering 1, 89,986 sq km. Declining trend upto 0.1 m/year is observed in 

about 1,88,651 sq km while only 1334 sq km area is showing declining trend of more 

than 0.1 m/year.(Anonymous, 2017) 

Dapoli is a Taluka of Ratmagiri, lies in costal strip with Net Annual Ground 

Water Availability 3769.62 ha-mand Existing Gross Ground Water Draft for Irrigation 

587.46 ha-m. The groundwater level till January 2017 was 2.70 mbgl which is -.088 

less than November 2016. In the last 10 years (2007-2017) January , groundwater level 

is decreased to -60 m bgl. .(Anonymous, 2017) 

1.2 Artificial Neural Network 

The basic concept of an artificial neural network (ANN) is derived from an 

analogy with the biological nervous system of the human brain and how the latter 

processes information through its millions of neurons interconnected to each other by 

synapses.  

Borrowing this analogy, an ANN is a massively parallel system composed of 

many processing elements (neurons), where the synapses are actually variable weights, 

specifying the connections between individual neurons and which are adjusted. The 

ANN technique is applied as a new approach and an attractive tool to study and predict 

groundwater levels without applying physically based hydrologic parameters. The 
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approach may improve the understanding of complex groundwater system and is able 

to show the effects of hydrologic, meteorological and anthropical impacts on the 

groundwater conditions. (Sirhan and Koch 2013). 

1.3 Justification 

Groundwater is one of the major sources of supply for domestic, industrial and 

agricultural purposes. To gain insight in the processes including the groundwater 

system, one needs knowledge about the essential variables and how they fluctuates over 

time. Forecasting the ground water level fluctuations is an important requirement for 

planning conjunctive use in any basin. 

 

1.4 Objectives 

This study was undertaken with the objective of development of artificial neural 

network models for forecasting groundwater levels of the study area. The specific 

objectives of the study are: 

i. To compare different algorithms used. 

ii. To carry out sensitivity analysis of developed models 

 

 

II. REVIEW OF LITERATURE 

2.1. ANN to predict the Water Table Level 

 Bustami et al., 2006 The predicted values of precipitation were then used to 

forecast water level of the same gauging station and yielded accuracy value of 85.3%, 

compared to only 71.1% accuracy of water level prediction with no estimation made 

to its missing precipitation data. These results showed that ANN is an effective tool in 

forecasting both missing precipitation and water level data, which are utmost essential 

to hydrologists around the globe.sequestration   potential   than   the   natural   forest   

because   of   ongoing   scientific management practices, uniform age and stand 

structure. 

Sreekanth, et al., 2009 studied the performance of the artificial neural network 

(ANN) model, i.e. standard feed-forward neural network trained with Levenberg-

Marquardt algorithm, was examined for forecasting groundwater level at 

Maheshwaram watershed, Hyderabad, India. The model efficiency and accuracy were 

measured based on the root mean square error (RMSE) and regression coefficient (R 
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2). The model provided the best fit and the predicted trend followed the observed data 

closely (RMSE = 4.50 and R 2 = 0.93). Thus, for precise and accurate groundwater 

level forecasting, ANN appears to be a promising tool. 

 Sirhan and Koch 2013 The initial ANN model for predicting groundwater 

levels is set up using monthly groundwater time series data recorded between 2000 and 

2010 at 70 wells across the Gaza Strip and employing seven independent predictor 

variables, namely, initial groundwater level, abstraction rate, recharge from rainfall, 

hydraulic conductivity, distance of the pumping wells from the coastal shoreline, depth 

to the well screen and well density. The best architecture of this initial ANN model 

found by trial and error turns out to be a 3-layer perceptron network (MLP), i.e. is an 

ANN with one hidden layer between input and output layer. 

 Sujatha and Kumar, 2015 As its groundwater levels showed a rapid decline 

in the last decade due to the overexploitation for the domestic, agricultural and 

industrial needs, accurate prediction is very essential to plan better conservation of 

groundwater resources.Results showed that Feed forward neural network trained with 

training algorithm Levenberg-Marquardt issuitable for accurate prediction of 

groundwater levels 

 

2.2. Sensitivity Analysis of Developed Models 

 Gevrey et al., 2003 Convinced by the predictive quality of artificial neural 

network (ANN) models. The data tested in the study concerns the prediction of the 

density of brown trout spawning redds using habitat characteristics. The PaD method 

was found to be the most useful as it gave the most complete results, followed by the 

Profile method that gave the contribution profile of the input variables. The Perturb 

method allowed a good classification of the input parameters as well as the Weights 

method that has been simplified but these two methods lack stability. Next came the 

two improved stepwise methods (a and b) that both gave exactly the same result but 

the contributions were not sufficiently expressed. Finally, the classical stepwise 

methods gave the poorest results. 

 

 

 

III. MATERIALS AND METHODS 

3.1. Study area 
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 The research work will be carried out at the Priyadarshini watershed, College 

of Agricultural Engineering and Technology, Dr. Balasaheb Sawant Konkan Krishi 

Vidyapeeth, Dapoli, Dist- Ratnagiri (M.S.). The Priyadarshini Watershed is located at 

17.1° N latitude, 73.26° E longitudes and 250 m above mean sea level. The region 

comes under heavy rainfall with average annual rainfall of 3500 mm. Priyadarshini 

watershed has 38.72 ha area. The ambient temperature of the region varies from 7.5 ̊C 

to 38.5 ̊C and relative humidity varies from 55 percent to 99 percent in different 

seasons. The climate of the region is hot and humid. The region has hilly topography 

with lateritic soils. 

3.2. Software required for study 

Neuro Solutions 

 The world we live is becoming even more reliant on the use of electronic 

gadget and computers to control the behavior of real world resources. neural networks 

are important for their ability to adapt. neural nets represent entirely different models 

from those related to the other symbolic systems. 

3.3. Data Description 

The weekly data of 9 years (2005-2014) were collected for Rainfall, Temperature, 

Solar, from Department of Agronomy, COA, Dapoli and Well depth and Permeability 

data of Priyadarshini Watershed was collected from department of Soil and Water 

Conservation Engineering, CAET, Dapoli. 

3.4. Artificial neural network 

ANN is an information processing paradigm that is inspired by the way biological 

nervous systems, such as the brain, The network is composed of a large number of 

highly interconnected processing elements called as neuron. They typically consist of 

hundreds of simple processing units which are wired together in a complex 

communication network. Each unit or node is a simplified model of real neuron which 

sends off a new signal or fires if it receives a sufficiently strong Input signal from the 

other nodes to which it is connected. Learning in this system involves the adjustment 

between neurons through synaptic connection. (Maind and wankar 2014) In this study 

feed-forward neural networks architecture will be used in predicting monthly water 

table depths. 
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3.5. ANN Architecture  

 In this study, will be use four parameters as input, rainfall data, permeability 

data, solar data and temperature.  

Input Nodes – neurons interfaces to the real world to receive its inputs as “Input Layer 

.The layer of input neurons receive the data either from input files or directly from 

electronic sensors in real-time applicationsthey just pass on the information to hidden 

nodes.(Maind and wankar 2014) 

Hidden Nodes -hidden layer receives the signals from all of the neurons in a layer above 

it, typically an input layer. After a neuron performs its function it passes its output to 

all of the neurons in the layer below it (Maind and Wankar, 2014). To calculate number 

of hidden layers to be use we use (2n+1). Where n = no. of nodes. 

Output Nodes – neurons provide the real world with the network's outputs. Output 

nodes are collectively referred to as “Output Layer” and are responsible for 

computations and transferring information from the network to outside world. In this 

study, The groundwater level will be estimated. (Maind and Wankar, 2014) 

3.6. Feed-forward neural network (FNN)  

Feed-forward neural networks have been applied successfully in many different 

problems since advent of error back propagation learning algorithm. This network 

architecture and the corresponding learning algorithm can be viewed as a generalization 

of popular least-mean-square (LMS) algorithm. In feed-forward networks, data flow 

through  network in one direction from input layer to output layer through hidden 

layer(s). Each output value is based solely on current set of inputs. In most networks, 

nodes of one layer are fully connected to the nodes in the next layer; however, this is 

not a requirement of feed-forward networks. A multilayer perception network consists 

of an input layer, one or more hidden layers of computation nodes, and an output layer. 

Input signal propagates through the network in a forward direction, layer by layer. Key 

disadvantages are that it train slowly, and require lots of training data.   

3.7. Building of Neural Networks  
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 For developing ANN model generally data sets are required for the training, 

validation and testing of the ANN networks. In this study, observed rainfall data, 

infiltration data, Water level, permeability data, Temperature data,  and Solar data will 

be used to train and validate an artificial neural-network. Levenberg–Marquardt (LM), 

Conjugate Gradient Algorithm (CG) used as the learning algorithm. The Neural 

Network will be optimized using Neuro Solutions . In the training stage, to define the 

output accurately, the number of nodes will be increased step-by-step in the hidden 

layer. The software normalizes the given data. Neurons in the input layer have no 

transfer function. Logistic sigmoid (logsig) transfer function will be used in hidden  and 

output layer. After the successful training of the network, the network will be tested 

with the test data. Using the results produced by the network, statistical methods will 

be used to make comparisons. 

3.8. Transfer Function 

 The output activation function for binary classification problems (i.e. outputs 

values that range (0,1) is the logistic sigmoid. The logistic sigmoid has the following 

form: 

𝑓(𝑥) =
1

1+𝑒−𝑥
                                                   ...3.1 

 

and outputs values that range (0,1). The logistic sigmoid is motivated somewhat by 

biological neurons and can be interpreted as the probability of an artificial neuron 

“firing” given its inputs.  

3.9.  Learning Algorithm 

Supervised Learning 

 In supervised training, both the inputs and the outputs are provided. The 

network then processes the inputs and compares its resulting outputs against the 

desired outputs. Errors are then propagated back through the system, causing the 

system to adjust the weights which control the network. This process occurs over and 

over as the weights are continually tweaked. The set of data which enables the training 

is called the "training set." During the training of a network the same set of data is 

processed many times as the connection weights are ever refined. The current 

commercial network development packages provide tools to monitor how well an 

artificial neural network is converging on the ability to predict the right answer. These 
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tools allow the training process to go on for days, stopping only when the system 

reaches some statistically desired point, or accuracy. When finally the system has been 

correctly trained, and no further learning is needed, the weights can, if desired, be 

"frozen.(Maind and wankar 2014) 

3.10. Training with different algorithms  

Determining the best values of all the weights is called training the ANN. In a 

supervised learning mode, actual output of a neural network is compared to  predicted 

output. Weights, which are usually randomly set to begin with, are then adjusted so that 

next result will produce less variation  between predicted and actual output. Training 

consists of presenting input and output data to network and allowing to run for certain 

epochs. These data are training data. For each input provided to the network, the 

corresponding predicted  output set is given as well as processed through 5000 epochs. 

It is considered complete when the artificial neural network reaches a desired 

performance level. At this level the network has achieved the desired statistical 

accuracy as it produces required outputs for a given sequence of inputs. When further 

learning is found to be unnecessary, resulting weights are typically fixed for the 

application. Once a supervised network performs well on the training data, it is 

important to see what it can do with a new set of data. If a system does not give desired 

output for this test set, then  training period should continue. testing is important to 

ensure that network has learned the basic patterns involved in a application and has not  

memorized all the data.  Two different algorithms are being used in this study in order 

to identify the one which trains a given network more efficiently.  

3.10.1 Conjugate Gradient Algorithm (CG) 

This is the direction in which the performance function is decreasing most rapidly. It 

turns out that, although the function decreases most rapidly along the negative of the 

gradient, this does not necessarily produce the fastest convergence 

                                                                                      ...3.2 

3.10.2 Levenberg-Marquardt (LM) 

 Levenberg-Marquardt algorithm was designed to approach second-order 

training speed without having to compute the Hessian matrix. When performance 
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function has form of a sum of squares (as is typical in training feedforward networks), 

then the Hessian matrix can be approximated as 

                                                         𝐻 = 𝐽𝑇𝐽                                                            ...3.3 

and gradient can be computed as 

                                                          g= 𝐽𝑇𝑒                                                            ...3.4 

 

where ,J is Jacobian matrix that contains first derivatives of network errors with respect 

to weights and biases, and e is a vector of network errors. Jacobian matrix can be 

computed through a standard back propagation technique that is much less complex 

than computing the Hessian matrix. 

 Levenberg-Marquardt algorithm uses this approximation to the Hessian 

matrix in the following Newton-like update: 

                                                 𝑥𝑘+1=𝑥𝑘−[𝐽
𝑇𝐽 + µ𝐼]

− 1
𝐽𝑇𝑒                                    ...3.5 

 

When scalar µ is zero, this is just Newton's method, using the approximate Hessian 

matrix. When µ is large, this becomes gradient descent with a small step size. Newton's 

method is faster and more accurate near an error minimum, so aim is to shift towards 

Newton's method as quickly as possible. Thus, µ is decreased after each successful step 

(reduction in performance function) and is increased only when a tentative step would 

increase performance function. In this way, performance function will always be 

reduced at each iteration of the algorithm. 

 

 

3.11. Neuro Solution Predictions. 

The software used for the study purpose is Neuro solution 5.0 version. The prediction 

of desired output in Neuro solution is done by following steps :- 

3.11.1. Selection and Assigning of Data 
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The first step after the initiation of application is to selection of Feed forward network 

methods, many methods are listed in a small Neural Builder tool box. For this study 

purpose Generalized Feed forward network is opted after the selection of network 

method next option sign icon is clicked, which shows a new Neural Builder with a 

Browsing and feeding input data for training set. Clicking on browse option will allow 

user to feed the input files. The input file should be in .csv format. After the files are 

fed the desired data should be selected and marked as desired by selecting the options 

from below the input data. Click or select next option for further process 

3.11.2. Building of Architecture  

The next Neural Builder box is Cross Validation and Testing sets  presents the options 

for selecting percentages for cross validation exemplars and testing exemplars, these 

exemplars are fewer selected data which represents the whole data. These are selected 

Randomly from datasets. For this study purpose 15 % is selected for Cross validation 

and testing respectively. After selection of exemplars next icon is clicked which 

proceeds to next neural builder option box which is Generalized Feed Forward Neural 

Builder Box. This gives the information about our input, output files and exemplars 

selected for training. It also gives us option to select number of hidden layers to be 

selected. Hidden layers are selected by the requirement of the datasets. For this study 

purpose, one hidden layer is selected. The next option is selected which shows us 

Layers Neural Builder option box. The first option box is for Hidden layer, Processing 

elements option is used to select number of nodes for training, number of nodes is 

selected according to the requirement. The number of nodes varies with different type 

of data and with number of input files.  The next option is Transfer which helps to select 

transfer functions, for this study purpose SigmoidAxon function is selected as it is 

widely and mostly used for ground water level prediction. Next option is Learning Rule, 

which lists many algorithms, for this study purpose Levenberg-Marquardt and 

Conjugate Gradient are compared. The next options shows next output layer builder 

which is not to be disturbed and move on to next builder box 

3.11.3 Supervised Learning Control and Probe Configuration 

After moving to next neural builder box Supervised learning control options appear, 

these controls the termination and time duration of testing sets by setting epochs. The 

larger the epochs the more time is needed for sets to train and large epochs usually give 



15  

more accurate data than small epochs. Sometimes datasets are trained to desired values 

before reaching to its set epochs so epochs freeze to a certain value, we can manually 

command the dataset to train even epochs stopped. After termination set to minimum 

next icon is selected. 

In Probe configuration the readings are and analysis of trained data is selected. These 

selected options have various analysis methods and readings. Bar graphs and charts can 

also be analyzed. The General option is ticked and Build option is pressed. The general 

options gives the RMSE, R, MAE and E value of the trained dataset. Clicking Build 

option will open applications build wizard which shows network structure and all the 

selected analysis tools which will give result as the network start training. 

3.11.4 Testing Wizard and Output 

After Building network, the network is trained by clicking green colour triangular play 

option on the left hand side of tool box. The trained datasets give the selected general 

values from probe configuration. After termination of training by completing 5000 

epochs Testing wizard is clicked and a new pop up options will open. Select Production 

in Dataset to test option from Testing Wizard-Step 1 and browse the same well input 

file which was selected initially for comparison. If the input data is normalized the 

output will be in same form. This application Normalizes data. Click next and output 

will be generated. copy the predicted data for further process. 

3.12. Performance evaluation criteria  

  Four different criteria will be used in order to evaluate effectiveness of each 

network and its ability to make precise predictions. These are Nash-Sutcliffe 

Coefficient (CE), Root Mean Square Error (RMSE), Mean absolute error (MAE) and 

Correlation Coefficient (CC) and given by following equations 

 

3.12.1. Root mean square error (RMSE) 

 The Root Mean Square Error (RMSE) (also called the root mean square 

deviation, RMSD) is a frequently used measure of the difference between values 

predicted by a model and values actually observed from environment that is being 

modeled. These individual differences are also called residuals, and the RMSE serves 

to aggregate them into a single measure of predictive power.  
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The RMSE of a model prediction with respect to the estimated variable Xmodel is defined 

as the square root of mean squared error: 
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where ,  

 Xobs is observed values and  

 Xmod is modeled values at time/place i 

           n is number of values 

3.12.2. Nash-Sutcliffe coefficient (E) 

 The Nash-Sutcliffe model efficiency coefficient (E) is commonly used to assess 

the predictive power of hydrological discharge models. However, it can also be used to 

quantitatively describe the accuracy of model outputs for other things than discharge 

(such as nutrient loadings, temperature, concentrations etc.). (Nash and Sutcliffe, 

1970)It is defined as: 
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where ,  

 Xobs is observed values and  

 Xmod is modeled values at time/place i 

 

 Nash-Sutcliffe efficiencies can range from - to 1. An efficiency of 1 (E = 1) 

corresponds to a perfect match between model and observations. An efficiency of 0 

indicates that model predictions are as accurate as  mean of  observed data, whereas an 

efficiency less than zero (-< E < 0) occurs when the observed mean is a better 

predictor than the model. Essentially, closer the model efficiency is to 1. 

 

3.12.3. Pearson correlation coefficient (R) 

 Correlation often measured as a correlation coefficient indicates the strength 

and direction of a linear relationship between two variables (for example model output 
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and observed values). A number of different coefficients are used for different 

situations. The best known is Pearson product-moment correlation coefficient (also 

called Pearson correlation coefficient or the sample correlation coefficient), which is 

obtained by dividing the covariance of the two variables by product of their standard 

deviations. If a series n observations and n model values, then Pearson product-moment 

correlation coefficient can be used to estimate   correlation between model and 

observations.            
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where ,  

 x  is observed values and  

 ẋ  is mean value for x 

 y is modeled values at time/place i 

 ŷ is mean value for y 

 

 The correlation is +1 in case of a perfect increasing linear relationship, and -1 

in case of a decreasing linear relationship, and values in between indicates the degree 

of linear relationship between for example model and observations. A correlation 

coefficient of 0 means there is no linear relationship between the variables. Square of 

the Pearson correlation coefficient (R), known as coefficient of determination, 

describes how much of the variance between two variables is described by the linear 

fit. 

33.12.4 Mean Absolute Error (MAE) 

 Measures average magnitude of errors in a set of predictions, without 

considering their direction. It’s average over the test sample of absolute differences 

between prediction and actual observation where all individual differences have equal 

weight. 

              𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − 𝑦̂𝑗|
𝑛
𝑗=1                                                         ...3.9 

where,  

 Yj is observed values and  

 Ӯj is modeled values at time/place i. 
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 n is number of values 

3.13. Sensitivity analysis  

 Sensitivity analysis is a method for extracting cause and effect relationship 

between inputs and outputs of network (Hung et al., 2008). In ANN modeling effects 

of each network inputs on the network output should be observed. This shows which 

input channels are the most significant, which helps to decide to the insignificant 

parameters and removing them. Will reduce size of the datasets and network.This 

reduces complexity and training time.  

 In this study, sensitivity analysis will be done to measure relative importance of 

each input variable for precisely predicting groundwater table fluctuations. It is done 

by removing one input parameter at a time from the model and testing its performance 

by comparing with original model.  

 This method is the classical stepwise method that consists of adding or rejecting 

step by step one input variable and noting the effect on the output result. Based on the 

changes in MAE, the input variables can be ranked according to their importance in 

several different ways depending on different arguments. For instance the largest 

changes in MAE due to input deletions can allow these inputs to be classified by order 

of significance. In another approach the largest decrease in MAE can identify the most 

important variables based on sensitivity analysis. (Gevrey et.al., 2003). 

 

 

 

 

 

 

 

 

 

IV. RESULTS 

India is fast moving towards a crises of ground water over use and the availability 

of surface water is greater than ground water. However, owning to the decentralized 

availability of ground water, it is easily accessible and forms the largest share of India’s 

agriculture and drinking water supply. As a result of over use, groundwater table is 
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decreasing day by day. So, for casting and predicting water table depth tends to manage 

groundwater level depth for sustaining groundwater. The result of the study taken for the 

objective of development of ANN models for forecasting water table. This chapter presents 

results along with discussions under the following headings 

 

4.1   Comparison of Algorithms. 

4.2   Sensitivity Analysis. 

 

4.1. Comparison of Algorithms 

 

The Nash-Sutcliffe coefficient(E), root mean square error, (RMSE), mean absolute 

error (MAE), and Pearson coefficient (R) given by equations 3.6 to 3.9 were used to 

assess the models response to that of observed value for different algorithms for 

developed ANN models during training, validation and testing period and presented in 

table 4.1. It is observed that the maximum LM value of R for training and validation are 0.908 

and 0.903 shown in  well 2 (2-9-1) and testing is 0.949, shown in well 8(2-9-1) whereas 

minimum value for training is 0.684 shown in well 1 (4-4-1) for validation and testing 

are 0.159 and 0.773 well 9(3-5-1) as presented in the table 4.1 

The maximum observed R value for CG training, validation and testing are 0.76 

shown in well 3(4-5-1), 0.85 shown in well 9(3-5-1) and 0.891shown in well 7(2-5-1) 

whereas the minimum value for training and testing are 0.671 and 0.458 shown in well 1(4-

4-1) for validation the minimum R value is 0.638 well 2 (4-7-1) 

It is observed that the Pearson coefficient (R) indicates the strength and 

direction of linear relationship between two variable the correlation is +1 in case of 

perfect increasing linear relationship and -1 in case of decreasing linear relationship a 

correlation coefficient of 0 means there is no linear relationship between the variables 

minimum value is (0.159) during validation period of well 9(2-9-1) for the LM 

algorithm and was maximum value is (0.949) during testing period of well 8 (2-9-1) 

for the LM algorithms. The variation of root mean square error (RMSE) statistics, a 

measure of residual variance which illustrates the architecture between the computed 

and observed water table depths, was minimum (0.050) during training period of well 

2 (2-9-1) for LM algorithm and was maximum (0.303) during validation period of well 

1(2-9-1) for the LM algorithm. The mean absolute error (MAE) was found to be 

minimum (0.005) during validation period of well 8(2-8-1) for CG algorithm and was 
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maximum (0.216) during validation period of well 6 (4-4-1) for LM algorithm. The 

Nash-Sutcliffe coefficient (E) was found to be varying from -506.05 (during validation 

period of well 1(2-9-1) for LM algorithm) to 0.896 (during testing period of well 1(2-

9-1) for LM algorithms). Fig.4.1 to 4.27 shows observed and predicted weekly water 

table depths of all the nine wells for different algorithms during training, validation 

and testing period. It was observed that the predicted water table depths  followed the 

observed water table pattern. 

Considering training, validation and testing period and all the statistics it is difficult 

to say which algorithm is better among the two selected for study. Because there was a lot 

of variation in all the statistics among the two selected algorithms for training, validation 

and testing period. But considering the testing period of all the nine wells it was found that 

LM algorithm was better than CG for wells i.e., well 1 (2-9-1),  well 2(2-9-1), well 3 (1-8-

1), well 4 (1-6-1), well 5 (2-9-1), well 6 (1-9-1), well 8(2-9-1) while CG algorithm was 

better than LM for wells i.e., well 7 (2-5-1) and well 9(3-5-1) So these algorithms for 

particular well were selected for sensitivity analysis 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Statistics of LM and CG algorithms for developed ANN models 

 

Well no Model 

steps 

R RMSE E MAE 

LM CG LM CG LM CG LM CG 

1 Training  0.684 0.671 0.146 0.084 -66.98 -6.450 0.011 0.007 

Validation 0.369 0.664 0.303 0.084 -506.05 -12.450 0.060 0.006 
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Testing 0.905 0.458 0.058 0.188 0.896 -201.44 0.011 0.014 

2 Training  0.908 0.713 0.050 0.081 -5.660 -13.610 0.004 0.006 

Validation 0.903 0.638 0.123 0.081 -45.007 -2.722 0.024 0.006 

Testing 0.943 0.695 0.067 0.084 -24.252 -1.827 0.012 0.006 

3 Training  0.855 0.766 0.071 0.101 -7.542 -17.912 0.006 0.009 

Validation 0.901 0.773 0.117 0.108 -1.598 -11.151 0.023 0.008 

Testing 0.901 0.757 0.101 0.066 -4.390 -1.55 0.019 0.005 

4 Training  0.764 0.680 0.0991 0.113 -0.332 -3.752 0.009 0.008 

Validation 0.868 0.749 0.263 0.152 -37.447 -4.230 0.052 0.011 

Testing 0.893 0.800 0.133 0.122 0.361 -1.615 0.025 0.009 

5 Training  0.829 0.704 0.099 0.104 -14.548 -7.452 0.009 0.009 

Validation 0.805 0.708 0.177 0.083 -7.663 -67.926 0.0355 0.006 

Testing 0.865 0.776 0.118 0.098 -571.59 -0.154 0.022 0.007 

6 Training  0.854 0.681 0.080 0.133 -60.563 -29.970 0.007 0.012 

Validation 0.889 0.722 0.108 0.167 0.194 -1.990 0.216 0.012 

Testing 0.944 0.857 0.107 0.183 -3.157 -1.043 0.020 0.014 

7 Training  0.715 0.693 0.149 0.169 -51.661 -61.645 0.013 0.015 

Validation 0.638 0.826 0.202 0.123 -45.523 -0.154 0.040 0.009 

Testing 0.880 0.891 0.220 0.084 -8.186 0.655 0.042 0.006 

8 Training  0.884 0.756 0.067 0.096 -166.52 -7.742 0.006 0.008 

Validation 0.870 0.775 0.132 0.066 -21.706 0.169 0.026 0.005 

Testing 0.949 0.535 0.087 0.079 -0.368 0.354 0.016 0.006 

9 Training  0.738 0.763 0.086 0.089 -61.015 -14.5 0.007 0.008 

Validation 0.159 0.855 0.141 0.132 -1.176 0.821 0.028 0.026 

Testing 0.773 0.864 0.090 0.049 -3.211 0.830 0.017 0.003 

 

 

As the results found were based on trial and error methods Levenberg-Marquardt (LM) 

algorithm provides better results than Conjugate Gradient algorithm as shown in the 

Fig.4.28. Levenberg-Marquardt (LM) best results for  ANN network architecture of 

model for  well 1(2-9-1), well 2(2-9-1), well 3(1-8-1), well 4(1-6-1), well 5(2-9-1), well 

6(1-9-1), well 7(3-5-1), well 8(2-9-1), well 9(2-9-1). 

 



22  

 

Fig.4.28: Observed and predicted weekly water table depth of average   

           value of LM and CG algorithm 

 

Table 4.2 to 4.3 shows the sensitivity analysis for all the nine wells for LM and CG 

algorithms along with selected network architectures. The observed data for LM showed 

maximum R value 0.9717 for well 2(2-9-1) with rainfall and permeability as input 

parameters and minimum R value 0.717 for well 1(2-9-1) with rainfall and permeability as 

input parameters and the average R value from all the well predicted from Levenberg- 

Marquardt is 0.834. 

Similarly the observed data for CG showed the maximum R value 0.802 well 9 (3-

5-1) with rainfall, permeability and temperature as input parameters and minimum R value 

0.702 well 1(4-4-1) with all the 4 input parameters such as rainfall, permeability, solar, soil 

temperature and the average R value from all the wells predicted from Conjugate Gradient  

is 0.743. From Table 4.4 and 4.5, LM was found to be better model compared to CG for R 

value.  

The observed maximum value of RMSE for LM is 0.235 shown in well 1 (2-9-1) 

with input parameters as rainfall and permeability and minimum value is 0.046 well   2(2-

9-1) with input parameters as rainfall and permeability.  

Similarly for E and MAE the maximum value are 0.921 shown for well 8 

 (2-9-1) with input parameters rainfall and permeability and 0.018 shown for well 1 (2-9-

1) with input parameters rainfall and permeability, respectively. Minimum value for E and 
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MAE are -3203 shown in well 1(2-9-1) with input parameters as rain fall and permeability 

and 0.003 shown in well 2(2-9-1) with input parameters as rainfall and permeability, 

respectively.  

 The observed maximum value of RMSE for CG is 0.130 shown in well 6 (4-4-1) 

with all the input parameters and minimum value is 0.078 well 8(2-8-1) with input 

parameters as rainfall and permeability.  

Table 4.2: Sensitivity analysis for LM algorithm  

Wells Parameter used ANN 

structure 

R RMSE E MSE 

1 Rainfall and Permeability 2-9-1 0.717 0.235758 -3203 0.01029 

2 Rainfall and Permeability 2-9-1 0.917 0.046594 -1.986 0.003563 

3 Permeability 1-8-1 0.861 0.069284 -19.577 0.005298 

4 Permeability 1-6-1 0.800 0.119728 -123.707 0.009156 

5 Permeability and Solar 2-9-1 0.842 0.082861 1.306 0.006337 

6 Permeability 1-9-1 0.886 0.069331 -26.470 0.005308 

7 Permeability, Temperature 

and Solar  

3-5-1 0.792 0.13298 -15.630 0.010169 

8 Rainfall and permeability 2-9-1 0.901 0.066517 0.921 0.005087 

9 Rainfall and permeability 2-9-1 0.810 0.084246 0.529 0.006442 

 

 

 

 

Table 4.3: Sensitivity analysis for CG algorithm  

Wells Parameter used ANN 

structure 

R RMSE E MSE 

1 Rainfall, Permeability, Solar 

and Temperature 

4-4-1 0.702 0.091 -127.438 0.00856 

2 Rainfall, permeability, Solar 

and Temperature 

4-7-1 0.707 0.081 -2.151 0.00625 



24  

3 Rainfall, Permeability, Solar 

and Temperature 

4-5-1 0.771 0.087 -15.384 0.006 

4 Rainfall, Permeability, Solar 

and Temperature 

4-9-1 0.715 0.120 -20.747 0.009 

5 Rainfall, Permeability, solar 

and Temperature 

4-6-1 0.722 0.099 -18.890 0.007 

6 Rainfall, Permeability, Solar 

and Temperature 

4-4-1 0.736 0.130 -4.660 0.010 

7 Rainfall and Temperature 2-5-1 0.780 0.129 0.726 0.009 

8 Rainfall and Permeability 2-8-1 0.757 0.078 0.316 0.005 

9 Rainfall and Permeability and 

Tempeature 

3-5-1 0.802 0.096 0.289 0.007 
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Fig.4.29: Observed and predicted weekly water table depth of well 1 for sensitivity 

analysis for LM algorithm 

 
 

Fig.4.30:Scatter plot for observed and predicted water table depth of well 1 for 

LM algorithms 
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Fig.4.31: Observed and predicted weekly water table depth of well 1 for 

sensitivity analysis for CG algorithm 

 

Fig.4.32:Scatter plot for observed and predicted water table depth of well 1 

for CG algorithm 
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Fig.4.33: Observed and predicted weekly water table depth of well 2 for 

sensitivity analysis for LM algorithm 

 

 
Fig.4.34:Scatter plot for observed and predicted water table depth of well 2 

for LM algorithm 
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Fig.4.35: Observed and predicted weekly water table depth of well 2 for 

sensitivity analysis for CG algorithm 

 

Fig.4.36:Scatter plot for observed and predicted water table depth of well 2 for 

CG algorithm 

86

88

90

92

94

96

98

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

W
at

er
 t

ab
le

 d
ep

th
(m

)

weeks

observed Predicted

88

89

90

91

92

93

94

95

96

88 90 92 94 96

P
re

d
ic

te
d

 w
a
te

r 
ta

b
le

 (
m

)

Observed water table depth (m)

1:1 line



29  

 

Fig.4.37: Observed and predicted weekly water table depth of well 3 for 

sensitivity analysis for LM algorithm 

 

Fig.4.38:Scatter plot for observed and predicted water table depth of well 3 

for LM algorithm 
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Fig.4.39 Observed and predicted weekly water table depth of well 3 for 

sensitivity analysis for CG algorithm 

 

Fig.4.40:Scatter plot for observed and predicted water table depth of well 3 

for CG algorithm 
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Fig.4.41: Observed and predicted weekly water table depth of well 4 for 

sensitivity analysis for LM algorithm 

 

Fig.4.42:Scatter plot for observed and predicted water table depth of well 4 

for LM algorithm 
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Fig.4.43: Observed and predicted weekly water table depth of well 4 for 

sensitivity analysis for CG algorithm 

 

Fig.4.43:Scatter plot for observed and predicted water table depth of well 4 

forCG algorithm 
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Fig.4.44: Observed and predicted weekly water table depth of well 5 for 

sensitivity analysis for LM algorithm 

 

Fig.4.45:Scatter plot for observed and predicted water table depth of well 5 

for LM algorithm 
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Fig.4.46: Observed and predicted weekly water table depth of well 5 for 

sensitivity analysis for CG algorithm 

 

Fig.4.47:Scatter plot for observed and predicted water table depth of well 5 

for CG algorithm 
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Fig.4.48: Observed and predicted weekly water table depth of well 6 for 

sensitivity analysis for LM algorithm 

 

Fig.4.49:Scatter plot for observed and predicted water table depth of well 6 

for LM algorithm 
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Fig.4.50: Observed and predicted weekly water table depth of well 6 for 

sensitivity analysis for CG algorithm 

 

Fig.4.51:Scatter plot for observed and predicted water table depth of well 6 

for CG algorithm 
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Fig.4.52: Observed and predicted weekly water table depth of well 7 for 

sensitivity analysis for LM algorithm 

 

Fig.4.53:Scatter plot for observed and predicted water table depth of well 7 

for LM algorithm 
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Fig.4.54: Observed and predicted weekly water table depth of well 7 for 

sensitivity analysis for CG algorithm 

 

Fig.4.55:Scatter plot for observed and predicted water table depth of well 7 

for CG algorithm 
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Fig.4.56: Observed and predicted weekly water table depth of well 8 for 

sensitivity analysis for LM algorithm 

 

Fig.4.57:Scatter plot for observed and predicted water table depth of well 8 

for LM algorithm 
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Fig.4.58: Observed and predicted weekly water table depth of well 8 for 

sensitivity analysis for CG algorithm 

 

Fig.4.59:Scatter plot for observed and predicted water table depth of well 8 

for CG algorithm 
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Fig.4.60: Observed and predicted weekly water table depth of well 9 for 

sensitivity analysis for LM algorithm 

 

Fig.4.61:Scatter plot for observed and predicted water table depth of well 9 

for LM algorithm 
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Fig.4.62: Observed and predicted weekly water table depth of well 9 for 

sensitivity analysis for CG algorithm 

 

Fig.4.63:Scatter plot for observed and predicted water table depth of well 9 

for CG algorithm 
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Considering sensitivity analysis for all the nine wells of LM and CG, the better graph 

pattern is shown in LM compared to that of CG. Because the predicted data almost 

overlapping the observed data. 

The scatter plots shows the correlation of predicted data to the water depth of 

observed well. Shown in scatter plots Fig 4.30 to 4.63, the scatter plots concludes that 

Fig 4.30 of well 1 have moderately correlation to observed data with  r greater than 

0.717 but lesser than 0.8 (Sahoo et al., 2017) and for well 7, R is 0.792 which is also 

moderately correlated, shown in Fig 4.53. All other well have strongly correlated with 

observed value with maximum value for well 2, R is 0.917 for Levenberg-Marquardt 

algorithm, shown in Fig 4.34. 

Similarly, for Conjugate Gradient for well 9, r is 0.802, which is strongly 

correlated to the observed value, shown in Fig 4.63, rest of 8 wells are moderately 

correlated as the value of r is less than 0.8. 

Table 4.4 to 4.5 shows the sensitivity analysis for all the nine well selected 

algorithms along with selected network architectures during sensitivity analysis. The 

step wise method for LM well 2 (2-9-1) were represented rank 1 and for well 1(2-9-1) 

were represented rank 9. The ranks were selected based upon MAE value of each well. 

Similarly for CG well 8 (2-8-1) were represented rank 1and for well 6 (4-4-1) represent 

rank 9. 

Table 4.4: Sensitivity analysis by stepwise method for LM 

algorithm  

Wells ANN Structure R MAE Rank 

1 2-9-1 0.717 0.010 9 

2 2-9-1 0.917 0.003 1 

3 1-8-1 0.861 0.005 3 

4 1-6-1 0.800 0.009 7 

5 2-9-1 0.842 0.006 5 

6 1-9-1 0.886 0.005 4 

7 3-5-1 0.792 0.010 8 

8 2-9-1 0.901 0.005 2 

9 2-9-1 0.810 0.006 6 
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Table 4.5: Sensitivity analysis by stepwise method for CG 

algorithm  

Wells ANN Structure R MAE Rank 

1 4-4-1 0.702 0.009 6 

2 4-7-1 0.707 0.006 3 

3 4-5-1 0.771 0.006 2 

4 4-9-1 0.715 0.009 8 

5 4-6-1 0.722 0.007 5 

6 4-4-1 0.736 0.010 9 

7 2-5-1 0.780 0.009 7 

8 2-8-1 0.757 0.005 1 

9 3-5-1 0.802 0.007 4 

 

 

 

              Fig.4.46 Comparison of sensitivity analysis of MAE between LM and CG 
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V. CONCLUSIONS 

• The two algorithms i.e. Levenberg–Marquardt Algorithm (LM) and Conjugate 

Gradient Algorithm (CG), gave good predictions of water table depths in the study 

area. 

• Results of sensitivity analysis showed that permeability is the most important 

variable for determining observed values. Levenberg-Marquardt (LM) was found 

to be best for well 1 (2-9-1), well 2 (2-9-1), well 3 (1-8-1), well 4 (1-6-1), well 5 

(2-9-1), well 6 (1-9-1) and well 8 (2-9-1) while CG algorithm was better than LM 

for well 7 (2-5-1) and well 9 (3-5-1) . 

• ANN models during sensitivity analysis showed that selected algorithms have 

predicted the water table depths in a better way in terms of its statistical 

performance. 

• The sensitivity analysis in the study was useful for confirming and even slightly 

refining the conceptual framework of the system, as well as providing insights for 

improving ANN prediction performance. 

• Sensitivity analysis showed that permeability parameter effects the output most. 

Three wells have permeability as only one input, which gives better results. 

• The average R value for three well is 0.846. 
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