Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate (*Punica granatum*)

Cv. Bhagwa

BY

Mr. ANMOL SHANKARRAO KHEMNAR

B.Sc. (Agri.)

DEPARTMENT OF POST HARVEST MANAGEMENT OF FRUITS, VEGETABLES AND FLOWERS CROPS

POST GRADUATE INSTITUTE OF POST HAREVST MANAGEMENT,

FACULTY OF AGRICULTURE,

DR. BALASAHEB SAWANT KONKAN KRISHI VIDYAPEETH,

DAPOLI – 415 712, DIST:- RATNAGIRI (M.S.)

July, 2016

Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate (*Punica*

granatum) Cv. Bhagwa

A thesis submitted to the

DR. BALASAHEB SAWANT KONKAN KRISHI VIDYAPEETH, DAPOLI

(Agricultural University) Dist. Ratnagiri (Maharashtra State)

in partial fulfillment of the requirements for the degree of

Master of Science (POST HARVEST MANAGEMENT)

IN

FRUITS, VEGETABLES AND FLOWERS CROPS

BY

Mr. Anmol Shankarrao Khemnar. B.Sc. (Agri.)

DEPARTMENT OF POST HARVEST MANAGEMENT OF FRUITS, VEGETABLES AND FLOWERS CROPS POST GRADUATE INSTITUTE OF POST HAREVST MANAGEMENT, FACULTY OF AGRICULTURE, DR. BALASAHEB SAWANT KONKAN KRISHI VIDYAPEETH, DAPOLI- 415 712, DIST:- RATNAGIRI (M.S.)

July, 2016

Dr. K, H. Pujari M.Sc. (Agri.), Ph.D. (Hort.) Associate Dean,

P.G.Institute of Post Harvest Management,

Killa- Roha,

Dist. Raigad (M.S.)

This is to certify that the thesis entitled "Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate (Punica granatum) Cv. Bhagwa" submitted to Department of Post Harvest Management of Fruits, Vegetables and Flowers crops, Post Graduate Institute Of Post Harvest Management, Faculty of Agriculture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri, (Maharashtra State), in the partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (POST HARVEST MANAGEMENT) in FRUIT, VEGETABLE AND FLOWER CROPS, embodies the results of a piece of bona-fide research carried out by Mr. Anmol Shankarrao Khemnar under my guidance and supervision. No part of this thesis has been submitted for any other degree or diploma. All the assistance and help received during the course of investigation and the sources of literature have been duly acknowledged by him.

Table	Title	Page No.
No.		
3.1	Land utilization pattern of Dapoli tahsil.	
3.2	Cropping pattern of Dapoli tahsil.	
3.3	Livestock population of Dapoli tehsil	
5.1	General information of selected farmers.	
5.2	Land use pattern of selected farmers.	
5.3	Cropping pattern of selected farmers.	
5.4	Per farm investment in different farm assets.	
5.5	Primary information of vermicompost units.	
5.6	Capital investment in vermicompost units.	
5.7	Per unit physical inputs utilization.	
5.8	Per unit cost of production of vermicompost	
5.9	Per quintal cost of production of vermicompost.	
5.10	Per unit profitability of vermicompost production.	
5.11	Regression coefficients for per unit vermicompost production.	
5.12	Break even point production in	
5.13	Measures of capital efficiency in vermicompost production.	
5.14	Disposal pattern of vermicompost.	

Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate (*Punica granatum*) Cv. Bhagwa

A thesis submitted to the

DR. BALASAHEB SAWANT KONKAN KRISHI VIDYAPEETH, DAPOLI

(Agricultural University) Dist. Ratnagiri (Maharashtra State) *in partial fulfilment of the requirements for the degree of*

Master of Science (POST HARVEST MANAGEMENT)

IN

FRUITS, VEGETABLES AND FLOWERS CROPS

BY

Mr. Anmol Shankarrao Khemnar.

B.Sc. (Agri.)

Approved by the Advisory Committee : Chairman and Research Guide:

> (K. H. Pujari) Associate Dean P.G.I. P.H.M. Killa- Roha Dist. Raigad.

(P. P. Relekar)

(S. S. Prabhudesai)

Associate Professor,

P.G.I.P.H.M. Killa- Roha.

Head, Dept. of Soil Science and Agricultural chemistry

CANDIDATE'S DECLARATION

I hereby declare that the thesis or any part thereof has not been previously submitted by me orother person to any other University orInstitute for a degree

At this gratifying moment of completion of my research problem, I feel obliged to record my gratitude to those who have helped me. First of all I express my infinite indebtedness and deep sense of gratitude to the God for continuously providing my spiritual energy, which has inspired me to reach at the highest excellence.

Some moments in life are cherished forever for one reason or another and this one is not exception for me. It is a moment of great pleasure in recording my fervent sence of gratitude.

Indeed the words at my command are not adequate to convey the depth of my feeling and gratitude to my honorable research guide **Dr. K, H. Pujari,** Associate Dean, Post Graduate Institute of Post Harvest Management, Killa-Roha, District Raigad for his most valuable and inspiring guidance with his friendly nature, love and affection, for his attention and magnanimous attitude right from the first day, constant encouragement, enormous help and constructive criticism throughout the course of this investigation and preparation of this manuscript.

I feel a great pleasure in getting this proud privilege offering my sincerest and devoted thanks to for their valuable guidance and co-operation throughout the course of my studies and other members of my advisory committee, **Dr. P. P. Relekar**, Associate Professor, Post Graduate Institute Of Post Harvest Management, Killa-Roha, District Raigad, and **Dr. S.S.Prabhudesai**, Head, Dept. of Soil Science and Agriculture chemistry College of Agriculture, Dapoli for his help in analytical research study for their worthy suggestions, ever willing help and unbiased attitude throughout the course of this investigation.

My profound and sincere thanks to all staff members viz. Mr. Shedge Sir, Mr. Khapre Sir, Mr. Debaje sir and Miss. Kashid mam from the Dept. of Post Harvest management of Fruit, Vegetable and flower crops, Post Harvest Institute of Post Harvest Management for their valuable guidance and co-operation throughout the course of my studies. I also extend my deep sense of honour to **Dr. T. Bhattacharay**, Honourable Vice Chancellor, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli.

The word like thanks should not come in between friends, but it came from the bottom of heart for my beloved, sweet friends Sidhesh, Shivam, Aniket, Ajinkya, Tejashree, Shobhana, Pranaykumar, Hitendra, Kiran, Prashant, Ganesh and other colleagues for their helping and kind co-operation during the course of study.

No word could do justice to express my sence of respect and gratitude to word my beloved Mom Mrs. Nanda Shankarrao Khemnar, Dad Mr. Shankarrao Hanumant Khemnar and all my lovely family members for their everlasting love, constant encouragement, prayer support and sacrifice, without which this dream could not have become a reality.

Last, but far from the least, I wish to express my deepest gratitude and sole full respect to 'God', who helped me on every path of life and made every step a great success.

Place: Killa-Roha

Date: / / 2016

(Anmol Shankarrao Khemnar.)

Place: Killa-Roha

(A. S. KHEMNAR)

Date: / / 2016

()

LIST OF TABLES

TABLE NO.	TITLE	BETWEEN PAGES
1.	Effect of foliar sprays of CPPU on fruit set (%) in pomegranate Cv. Bhagwa	26-27
2.	Effect of foliar sprays of CPPU on fruit drop (%) in pomegranate Cv. Bhagwa	27-28
3.	Effect of foliar sprays of CPPU on yield (kg) in pomegranate Cv. Bhagwa	28-29
4.	Effect of foliar sprays of CPPU on fruit weight in pomegranate Cv. Bhagwa	29-30
5.	Effect of foliar sprays of CPPU on fruit Volume in pomegranate Cv. Bhagwa	30-31
6.	Effect of foliar sprays of CPPU on specific gravity in pomegranate Cv. Bhagwa	30-31
7.	Effect of foliar sprays of CPPU on L* value, a* value and b* value for colour of fruits in pomegranate Cv. Bhagwa	31-32
8.	Effect of foliar sprays of CPPU on TSS °Brix of fruits in pomegranate Cv. Bhagwa	32-33
9.	Effect of foliar sprays of CPPU on acidity (%) of fruits in pomegranate Cv. Bhagwa	33-34
10.	Effect of foliar sprays of CPPU on reducing sugars (%) of fruits in pomegranate Cv. Bhagwa	33-34
11.	Effect of foliar sprays of CPPU on total sugars (%) in fruits of pomegranate Cv. Bhagwa	34-35
12.	Effect of foliar sprays of CPPU on sensory evaluation of ripe fruits in pomegranate Cv. Bhagwa	34-35
13.	Cost of cultivation of pomegranate Cv. Bhagwa	36-37

LIST OF FIGURES

FIGURES NO.	TITLE	BETWEEN PAGES
1.	Effect of foliar sprays of CPPU on fruit set (%) in pomegranate Cv. Bhagwa	26-27
2.	Effect of foliar sprays of CPPU on fruit drop (%) in pomegranate Cv. Bhagwa	27-28
3.	Effect of foliar sprays of CPPU on Yield (kg) of fruits in pomegranate Cv. Bhagwa	28-29
4.	Effect of foliar sprays of CPPU on fruit weight in pomegranate Cv. Bhagwa	29-30
5.	Effect of foliar sprays of CPPU on fruit Volume in pomegranate Cv. Bhagwa	30-31
6.	Effect of foliar sprays of CPPU on specific gravity of fruits in pomegranate Cv. Bhagwa	30-31
7.	Effect of foliar sprays of CPPU on L* value, a* value and b* value for colour of fruits in pomegranate Cv. Bhagwa	31-32
8.	Effect of foliar sprays of CPPU on TSS °Brix of fruits in pomegranate Cv. Bhagwa	32-33
9.	Effect of foliar sprays of CPPU on acidity (%) of fruits in pomegranate Cv. Bhagwa	33-34
10.	Effect of foliar sprays of CPPU on reducing sugar (%) of fruits in pomegranate Cv. Bhagwa	33-34
11.	Effect of foliar sprays of CPPU on total sugars (%) in fruits of pomegranate Cv. Bhagwa	34-35
12.	Effect of foliar sprays of CPPU on sensory evaluation of ripe fruits in pomegranate Cv. Bhagwa	34-35

LIST OF PLATES

Plate No.	TITLE	BETWEEN PAGES
1.	Effect of CPPU (Forchlorofenuron) with GA3 (Gibberellic acid) on fruit set at mature stage of pomegranate Cv.Bhagwa	34-35
2.	Effect of CPPU (Forchlorofenuron) with GA3 (Gibberellic acid) on post-harvest quality of pomegranate Cv. Bhagwa	34-35

TABLE OF CONTENTS

	LIST OF TABLES	Ι
	LIST OF FIGURES	II
	LIST OF PLATES	III
	ABSTRACT	IV
1.	INTRODUCTION	01
2.	REVIEW OF LITERATURE	05
	2.1 Effect of foliar sprays of CPPU on fruit set, fruit drop and yield of different crops	05
	2.2 Effect of foliar sprays of CPPU physical	09
	characteristics of different fruit crops	
	2.2.1 Effect of foliar sprays of CPPU on weight of fruit	09
	2.2.2 Effect of foliar sprays of CPPU on volume of fruit	12
	2.3 Effect of foliar sprays of CPPU on chemical composition of different fruit crops	13
	2.3.1 Effect of foliar sprays of CPPU on total soluble solids (TSS)	13
	2.3.2 Effect of foliar sprays of CPPU on titratable acidity (%)	14
	2.3.3 Effect of foliar sprays of CPPU on sugar	15
	(reducing and total sugar)	
3.	MATERIAL AND METHODS	18
	3.1 Experimental material	18

	3.2 Experimental method	19
	3.3 Observations recorded	20
	3.3.1 Fruit set (%)	20
	3.3.2 Fruit drop (%)	21
	3.3.3 Yield (kg/tree)	21
	3.3.3 Physical characteristics of pomegranate fruit	21
	3.3.3.1 Weight of fruits (g)	21
	3.3.3.2 Volume of fruits (ml)	21
	3.3.3 Specific gravity	22
	3.3.4 Chemical parameters of pomegranate fruit	22
	3.3.4.1 Total soluble solids (⁰ B)	22
	3.3.4.2 Titratable acidity (%)	22
	3.3.4.3 Reducing sugars (%)	23
	3.3.4.4 Total sugars (%)	23
	3.3.5 Sensory-evaluation	24
	3.3.6 Statistical analysis	25
4.	RESULTS AND DISCUSSION	26
	4.1 Effect of foliar sprays of CPPU on fruit set and yield of	26
	pomegranate Cv. Bhagwa	20
	4.1.1 Fruit set (%)	26
	4.1.2 Fruit drop (%)	27
	4.1.3 Fruit yield (kg/tree)	28
	4.2 Effect of foliar sprays of CPPU on physical	29

	parameters in fruits of pomegranate Cv. Bhagwa	
	4.2.1. Fruit weight (g)	29
	4.2.2. Fruit volume (ml)	30
	4.2.3. Specific gravity	30
	4.2.4 Colour value (L*, a* and b* value)	31
	4.2.4.1. L* value for colour	31
	4.2.4.2 a* value for colour	31
	4.2.4.3 b* value for colour	32
	4.3 Effect of foliar sprays of CPPU on chemical	
	composition of fruit	32
	4.3.1. TSS (°Brix)	32
	4.3.2 Titratable acidity (%)	33
	4.3.3 Reducing sugars (%)	33
	4.3.4 Total sugars (%)	34
	4.4 Sensory evaluation of pomegranate Cv. Bhagwa	34
	fruits	
	4.5 Cost of cultivation of pomegranate Cv. Bhagwa	35
5.	SUMMARY AND CONCLUSION	37
	5.1 Effect of foliar sprays of CPPU on fruit set and yield of	0.7
	pomegranate Cv. Bhagwa	37
	5.1.1 Fruit set (%)	37
	5.1.2 Fruit drop (%)	38

5.1.3 Fruit yield (kg/plant)	38
5.2 Effect of foliar sprays of CPPU on physical parameters	
in fruits of pomegranate Cv. Bhagwa	38
5.2.1. Fruit weight (g)	38
5.2.2. Fruit volume (ml)	39
5.2.3 Specific gravity	39
5.2.4 Colour value (L*, a* and b* value)	39
5.2.4.2. L* value for colour	39
5.2.4.2. a* value for colour	40
5.2.4.3. b* value for colour	40
5.3 Effect of foliar sprays of CPPU on chemical	
composition of fruit	40
5.3.1. TSS (°B)	40
5.3.2 Titratable acidity (%)	41
5.3.3 Reducing sugars (%)	41
5.3.4 Total sugars (%)	41
5.4 Sensory evaluation	42
5.5 Cost of cultivation	42
CONCLUSION	42
LITERATURE CITED	I-VII
APEENDIX	I-IV
VITAE	

DEPARTMENT OF POST HARVEST MANAGEMENT OF FRUIT, VEGETABLE AND FLOWER CROPS

POST GRADUATE INSTITUTE OF POST HARVEST MANAGEMENT DR. BALASAHEB SAWANT KONKAN KRISHI VIDYAPEETH, DAPOLI

Title of Thesis	:	"Effect of CPPU (Forchlorofenuron) with GA_3 (Gibberellic acid) on fruit set and post harvest quality of pomegranate (<i>Punica granatum</i>) Cv.				
		Bhagwa".				
Name of the student	:	Mr. Khemnar Anmol Shankarrao				
Regd. No.	:	PHMRM-0140098				
Year of Admission	:	2014-2015				
Degree	:	M.Sc. (P.H.M.)				
Name of the Research	:	Dr. K.H. Pujari				
Guide and designation		Professor and Associate Dean,				
		Post Graduate Institute of				
		Post Harvest Management,				
		Kill-Roha.				
		Dist- Raigad				

ABSTRACT

The present study entitled, "Effect of CPPU (Forchlorofenuron) with GA_3 (Gibberellic acid) on fruit set and post harvest quality of

pomegranate (*Punica granatum*) Cv. Bhagwa" was undertaken in the pomegranate orchard At-Post-Sakur, Tal-Sangamner, Dist-Ahmednagar (M.S.) during 2015-2016.

Investigation on effect foliar application of different concentrations of CPPU with GA_3 on fruit set, fruit drop, yield and physico-chemical parameters was conducted by using randomized block design (RBD).

The experiment result indicated that fruit set, fruit drop, and chemical properties of pomegranate Cv. Bhagwa were influenced by different concentrations of CPPU with GA₃ spray. Significantly higher fruit set, fruit drop, yield, TSS as well as organoleptic evaluation of pomegranate Cv. Bhagwa was observed in CPPU treated plants over control plants. However there was no significant difference was noticed in terms of acidity, reducing sugar and total sugars in CPPU treated plants over control plants.

The treatment T_3 i.e. T_1 (10ppm CPPU at flowering) + (30ppm CPPU with 10ppm GA₃) was significantly superior to all other treatment in terms of fruit set, fruit drop, yield, fruit weight, TSS and cost per quintal.

फल, सब्जी और फुल फसल कटाई पश्चात व्यवस्थापन विभाग, कटाई पश्चात व्यवस्थापन पद्व्युत्तर संस्था,किल्ला-रोहा डॉ. बाळासाहेब सावंत कोकण कृषि विद्यापीठ, दापोली –४१५ ७१२ जि.रत्नागिरी,(महाराष्ट्र) भारत

प्रबंध का नाम :	"अनार के फललागन और कटाई पश्चात गुणवत्ता पर सी.पी.पी.यू. (फोरक्लोरोफेन्युरॉन) और जिए _३ (जिब्रेलिक
छात्र का नाम:)के प्रभाव का अध्ययन करना'' . अनमोल शंकरराव खेमनर
पंजीकरण क्रमांक:	पी एच एम आर एम-०१४००९८
दाखल किया गया वर्ष :	२०१५-२०१६
विद्योपाधी :	एम एस सी (पीएचएम)
संशोधन मार्गदर्शकका नामऔर पदनाम :	डॉ.के.ह. पुजारी. प्राध्यापक व सहयोगी अधिष्ठाता कटाईपश्चातव्यवस्थापन पदव्युत्तरसंस्था, किल्ला-रोहा जि. रायगड.

प्रबंध सार

अनार की फललागन और कटाई पश्चात गुणवत्ता पर सी.पी.पी.यू. (फोरक्लोरोफेन्युरॉन)और जिब्रेलिक 🗆 🗆 🗠 (जिए3) के प्रभाव का अध्ययन का संशोधन प्रकल्प साकूर, ता- संगमनेर, जि- अहमदनगर मेंसन २०१५-१६ में किया गया।

इस संशोधनः । । । । । । । । । । । । ः व्यान कराइंन (आर.बी.डी) का इस्तेमाल कर के फललागन, फल गिरना, रासायनिक और भौतिक गुणधर्मी का अध्ययन किया गया।

फल लागन, फल गिरना, फल का वजन, एकूण विद्राव्य घन पदार्थ और प्रती □□□□□ कीमत के लिये टी₃ (१० पीपीएम सी.पी.पी.यु फुलधारण के समय) + (३० सी.पी.पी.यु आणि १० पीपीएम जीए₃) □□ उपचार □□□□ उपचारो □□□□□□ में उत्कृष्ट है। फळे, भाजीपाला आणि फुल पिके काढणी पश्चात व्यवस्थापन विभाग, काढणी पश्चात व्यवस्थापन पदव्युत्तर संस्था, किल्ला-रोहा डॉ. बाळासाहेब सावंत कोकण कृषि विद्यापीठ, दापोली – ४१५ ७१२ जि. रत्नागिरी, (महाराष्ट्र) भारत

प्रबंधशिर्षक	:	"डाळिंबावरील फळधारणा व काढणी पश्चात गुणवत्ता
		यावर सी.पी.पी.यू. (फोरक्लोरोफेन्युरॉन) आणि
		जिए₃(जिब्रेलिक □□□□) यांच्या परिणामाचा अभ्यास
		करणे"
विद्यार्थ्याचे नाव	:	🗆 🗆 🗆 . अनमोल शंकरराव खेमनर
नोंदणी क्रमांक	:	पी एच एम आर एम-०१४००९८
शैक्षणिक वर्ष	:	२०१५-२०१६
अभ्यासक्रम	:	एम एस सी (पीएचएम)
संशोधन मार्गदर्शक	ाचे	डॉ. के.ह. पुजारी.
नाव व हुद्दा :		प्राध्यापक व सहयोगी अधिष्ठाता
-		काढणीपश्चातव्यवस्थापन पदव्युत्तरसंस्था, किल्ला-
		रोहा जि. रायगड.

प्रबंध गोषवारा

डालिंबावरील फळधारणा व काढणीपश्चात गुणवत्ता यावर सी.पी.पी.यू. (फोरक्लोरोफेन्युरॉन) आणि जिब्रेलिक व्वव्यव्य (जिए_३) यांच्या परिणामाचा अभ्यास संशोधन प्रकल्प साकुर, ता- संगमनेर, जि- अहमदनगर येथे डाळिंबाच्या बागेत २०१५-१६ या वर्षी करण्यात आला. या संशोधनामध्ये विवयवात विवयवात विद्याईन (आर. बी. डी.) चा वापर करून फळधारणा, फळगळती, रासायनिक आणि भौतिक गुणधर्मांचा अभ्यास करण्यात आला.

या संशोधनाअंती असा निष्कर्ष निघाला की, फळधारणा, फळगळती, आणि फळांच्या रासायनिक गुणधर्मावरती सी.पी.पी.यु. आणि जि.ए₃ च्या विविध प्रमाणाच्या विविध परिणाम आढळले. डाळिंबाच्या भगवा प्रजातीवर सी.पी.पी.यु. आणि जि.ए₃ विविध परिणाम आढळले. डाळिंबाच्या भगवा प्रजातीवर सी.पी.पी.यु. आणि जि.ए₃ विविध परिणाम आढळले. डाळिंबाच्या भगवा प्रजातीवर सी.पी.पी.यु. आणि जि.ए₃ विविध परिणाम आढळले. डाळिंबाच्या भगवा प्रजातीवर सी.पी.पी.यु. आणि जि.ए₃ विविध परिणाम आढळले. डाळिंबाच्या भगवा प्रजातीवर सी.पी.पी.यु. आणि जि.ए₃ विविध परिणाम आढळले. डाळिंबाच्या भगवा प्रजातीवर सी.पी.पी.यु. आणि जि.ए₃ विविध परिणाम आढळले. डाळिंबाच्या भगवा प्रजातीवर सी.पी.पी.यु. एकूण विद्राव्य घटकात लक्षणीय वाढ झाल्याचे आढळून आले, तसेच स्वाद मूल्यमापन चाचणीमध्येसर्वाधिक गुण मिळाले. तथापि सी.पी.पी.यु. सह जि.ए₃ ची फवारणी केलेली झाडे व नियंत्रित झाडे यांच्या फळांमधील आम्लता, शर्करा आणि सापेक्ष शर्करा विविध जिल्लीय असा कोणताही बदल आढळून आला नाही.

फलधारणा, फळगळती, फळाचे वजन, एकूण विद्राव्य घटक आणि प्रति क्विटल किंमत यांसाठी टी_३ (१० पीपीएम सी.पी.पी.यु फुलधारणेच्या वेळी) + (३० सी.पी.पी.यु आणि १० पीपीएम जीए_३) ही व्यावाय व्यावारांच्या तुलनेत उत्तम दर्जाची

Chapter-I

Introduction

Pomegranate (*Punica granatum*) is an important fruit crop of arid and semiarid regions of the world. It is a highly remunerative crop for replacing subsistence farming and alleviating poverty food and medicine (Holland *et al.*, 2009). Pomegranate is originated from Iran. This crop is known to have been domesticated in the Middle East about 5000 years ago (Adsule and Patil, 2005).

The total area under pomegranate cultivation in the world is well above 3,00000 ha, of which more than 76% is found in five countries viz.,India, Iran, China, Turkey and the USA. Estimation of world pomegranate production is 3,086 thousand tonnes. However, the countries viz., that fall behind Spain, Egypt and Israel, with a surface between16,000 and 2,400 ha, are the ones that have developed much more in exports, research, market development and new varieties (Melgarejo, 2012).

In India, the area under pomegranate is 1,30,770 hectares with production of 13,45,720 MT. Maharashtra is leading producer of pomegranate with 90000 hectares area and 945000 MT production (Anon., 2015). In Maharashtra, pomegranate is cultivated in the districts of Solapur, Nasik, Ahmednagar, Pune, Sangli, Dhule, Latur, Usmanabad, Jalna, Parbhani, Aurangabad, Beed, and Satara.The varieties that are grown commercially include Bhagwa, Ganesh, G-137 and Mridula.

Pomegranate is one of the first five domesticated edible fruit crops along with fig, date palm, grape and olive. It has been the symbol of health, fertility and rebirth as mentioned in many ancient cultures. Pomegranate is one of the richest sources of Riboflavin. Rind of the fruit, bark of stem and root of pomegranate contain more than 28 per cent gallotannic acid and dye which is useful in tanning as natural bio-dye. Pomegranates are rich in polyphenols, specifically ellagic acid and punical- gins, which can act as potent antioxidants. Ellagic acid is found in the fleshy testa of the pomegranate besides other red coloured berries. Punicalgins are found only in the outer skin of the pomegranate and are estimated to have twice the antioxidant capability of red wine and green tea (Sevda and Rodrigues, 2011).

Pomegranate is a very promising and emerging crop for its refreshing arils, juice and its chemo-preventive properties having medicinal value. There has been a remarkable increase in the commercial farming of the pomegranates globally due to the potential health benefits of the fruit such as its high antioxidant, anti-mutagenic, anti-hypertension activities and the ability to injury. Pomegranate anthocyanins reduce liver have been demonstrated scavenging activities. The pomegranate polyphenolic compounds are able to elevate the antioxidant capacity of the human body. The juice from the pomegranates is one of the nature's antioxidants.Nutritional powerful composition of the most pomegranate per 100gm is 68 Kcal consumption energy, 0.95gm protein, 0.3gm total lipid, 17.17gm carbohydrate, 0.6gm total dietary fiber, 16.57gm total sugar, 259mg potassium, 8mg phosphorus, 3mg sodium and calcium and 6.1mg ascorbic acid (Dhinesh, 2016).

Bahar treatments like root pruning, root exposure, withholding water, defoliation of plants by hand or by chemical defoliation, etc. are practiced to induce moisture stress, so that plants drop their leaves and the growth is controlled. The main objective of this treatment is to regulate the crop by forcing to take rest and produce profuse flowering and fruiting during any one of the three bahars which are ambe bahar (January-February), mrig (June-July) and hast bahar (September-October). Due to force full resting and shading leaves of pomegranate trees while managing the bahar, the problems like flower drop and incidence of unopened flower are seen.

Plant growth regulators (PGRs) are organic compounds, other than nutrients, that modify plant physiological processes. PGRs called biostimulants or bioinhibitors, act insideplant cells to stimulate or inhibit specific enzymes or enzyme system and help regulate plant metabolism. They normally are active at very low concentration in plants. The importance of PGRs was first recognized in 1930s. Since then, the natural and synthetic compounds that alter function, shape, and size of crops have been discovered. Today, specific PGRs are used to reduce flower drop, increases fruit setting modify crop growth rate and growth pattern during the various stages of development, from germination through harvest and post-harvest preservation (Harms, 2000).

CPPU i.e Forchlorofenuronis a member of the synthetic cytokinin group with phenyl urea structure, with strong inhibitory effects on cytokinin oxidation (Mok and Mok, 2001). The use of plant growth regulators (PGR) is one way of stimulating cell division or enlargement, both of which promote final fruit size. Forchlorfenuron or N-(2-Chloro-4-pyridyl)-N'-phenylurea) (CPPU) is an effective and well- known PGR for improvement of fruit size through stimulating cell division (Kim, 2006). The physiological actions of CPPU in plants include increasing fruit size and improving plant fruiting performance by postponing the senescence process (Ahmed and Abdel-aal, 2007). The foliar spraying of CPPU (1% SP) when applied

alone or in combination with GA₃(40 % WSG) at the various growth stages and concentration, significantly increased leaf photosynthesis, berry biochemical parameters, quality parameters namely berrylength, berry diameter, bunch weight, T.S.S., acidity and also the yield of Thompson seedless grapes (Khot, 2015).

Gibberellins control the cell elongation and division in plant shoots. They have been shown to stimulate ribonucleic acid and proteins synthesis in plant cells.Gibberellins constitute a group of plant hormones that control developmental processes such as germination, shootelongation, tuber formation, flowering, and fruit set and growth in diverse species. The most widely available plant growth regulator is GA₃ or gibberellic acid, which induces stem and internode elongation, seed germination, enzyme production during germination and fruit setting and growth (Davies, 1995). Gibberellic acid is an important growth regulator that may have many uses to modify the growth, yield and yield contributing characters of plant (Rafeekher et al., 2002).

With this view, the present investigation entitled "Effect of CPPU (Forchlorofenuron) with GA3 (Gibberellic acid) on fruit set and post-harvest quality of pomegranate (*Punica granatum*) Cv. Bhagwa", was carried out with following objectives.

1. To study the effect of foliar sprays of CPPU with GA_3 on fruit set of pomegranate cv. Bhagwa

2. To study the effect of spraying CPPU with GA₃ on fruit yield and quality of pomegranate cv. Bhagwa

CHAPTER II RIVIEW OF LITURATURE

The research work entitled "Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post-harvest quality of pomegranate *(Punica granatum)* Cv. Bhagwa" is reviewed in the current chapter under the following headings. The literature in this regard on other important fruit crops is also reviewed under the following headings.

- 2.1 Effect of foliar sprays of CPPU on fruit set and yield of different fruit crops
- 2.2 Effect of foliar sprays of CPPU on physical characteristics of different fruit crops
- 2.2 Effect of foliar sprays of CPPU on chemical composition of different fruit crops

2.1 Effect of foliar sprays of *CPPU* on fruit set, fruit drop and yield of different fruit crops

Curry and Greene (1993) reported that "CPPU influenced fruit quality, fruit Set, return bloom, and preharvest drops in apple. CPPU was applied to 'Delicious' apple trees at 0, 6.25, 12.25 and 50 mg/L at full bloom and 2 weeks after full bloom. The flesh firmness of fruit linearly increased with increasing concentration.

Patterson (1993) studied the effects of CPPU (N-(2-chloro-4pyridyl)-N'-phenylurea) on fruit growth, maturity and storage quality of kiwifruit cv. Hayward. CPPU was applied to fruitlets 21 days after flowering, either as a 5 mg/ lit. dip or as a 5 mg/lit. spray. Dipping increased mean fresh weight of fruit at harvest by 43 per cent and spraying by 33 per cent. Hayata and Niimi (1995) studied the use of CPPU for promoting fruit set and inducing parthenocarpy in water melon. The results showed that treating pollinated flowers with CPPU increased the fruit set to over 90 per cent. In CPPU treated non pollinated ovaries, fruit set was 65 and 89.5 per cent, respectively with 20 and 200 ppm treatment.

Subhadrabandhu and Iamsub (1996) studied the effect of CPPU (1-(2-chloro-4-pyridyl)-3-phenylurea) on fruit setting of mango (*Mangifera indica* L.) cv. Nam Dok Mai" Mango. The trees were sprayed on to the inflorescences with 0, 20, 40, and 60 ppm of CPPU at ten days after inflorescence emergence and at full bloom. Thus, CPPU had some effects in the early stage of fruit setting in mango and the application at full bloom showed better result than that at ten days after inflorescence emergence.

Han and Lee (2001) investigated the effects of GA_3 , CPPU (N-(2-chloro-pyridyl)-N'-phenylurea) and ABA on the fruit quality. The GA_3 treatment increased cluster length, weight, and berry weight. CPPU treatment increased cluster length, diameter, weight and berry weight in yoho (*Vitis vinifera* L. x *V. labrusca* L.) grape. ABA treatment significantly increased the anthocyanin content in grape treated with GA_3 and CPPU.

Stern *et.al.* (2002) studied the effect of CPPU and BA on fruit size in 'Royal Gala' (*Malus domestica*) apple under warm climate. CPPU at a concentration of 10 ppm and synthetic cytokinins BA at a concentration of 50 ppm caused an appreciable (>50%) and significant increase in fruit size when applied two weeks after full bloom. They demonstrate that BA and CPPU have a significant potential to improve fruit size of 'Royal Gala' apple without any negative effects on fruit quality at harvest or in storage of 0°C. Guirguis *et al.* (2003) while studying the effect of Sitofex (cppu) on fruit set, fruit quality of Le conte pear cultivar reported that percentages of initial fruit set and fruiting of Le Conte pear were significantly increased by all CPPU treatments in the two seasons (2001 and 2002) as compared to the control. The best results with 85 per cent fruit set were obtained by high 40 ppm concentration of CPPU during the first season (2001).

Ahmed and Abdel (2007) studied the effect of Sitofex (CPPU) which was applied at 5, 10 and 15 ppm, one, two, three and four weeks after fruit setting of Le-contre pear. Best results with regard to yield and fruit quality were obtained when CPPU was sprayed at 10 ppm during two weeks after fruit setting.

Notodimedj (1999) studied the effect of plant growth regulators such as NAA, GA₃, and CPPU on to Arumanis mango trees at 14 days after blooming on fruit retention, yield and fruit quality. The result showed that CPPU (1-(2-chloro -4-pyridyl)-3-phenyl urea) @ 10 ppm, gave the best results with increase in the fruit retention, number of fruits per cluster and per plant, weight of fruit, fruit volume and leaf area.

Smith (2008) studied the use of CPPU in wine grapes to increase fruit set. Result showed that the CPPU application increased the berries per cluster and cluster weight.

Sasaki and Utsunomiya (2012) studied the effect of combined application of CPPU and GA₃ on the growth of 'Irwin' mango fruits and reported that the spraying of 10 ppm CPPU plus 100 ppm GA₃ on panicles twice and 4 times from the end of the physiological fruit drop stage promoted the fruit growth. The results indicate that the combined application of 10ppm CPPU plus 100 ppm GA₃ from the early stage of fruit growth increased the fruit set as well as fruit quality.

Kumar *et al.* (2013), while studying the effect of different concentrations of CPPU and fruit thinning on yield and quality of kiwi fruit, recorded maximum fruit yield when kiwi fruit vines were sprayed with 10 ppm CPPU, whereas fruit yield in treatments with 12.5 ppm CPPU and 15 ppm CPPU were at par with each other.

Susila *et al.* (2013) studied the effect of exogenous application of CPPU and GA3 on yield, fruit quality characters and seedlessness in watermelon. The result showed that the application of CPPU at 200ppm and GA at 100ppm to watermelon flowers at anthesis resulted in maximum fruit set than other treatment.

Asaad (2014), while studying the influence of spraying sitofex, iron, manganese and zinc on "Anna" apple trees planted on new reclaimed calcareous land, recorded maximum values when trees sprayed with 15 ppm CPPU + 10gm Fe + 7gm Mn + 10.5gm Zn/20L water (21.92 and 24.21%), followed by spraying with 10 ppm CPPU + 10gm Fe + 7gm Mn + 10.5gm Zn/20L water. The minimum values were obtained from control in the both seasons of study (12.48 and 12.52%).

Mousawinejad *et al.* (2014) studied the effects of CPPU on fruit size and quality of tomato (*Solanum lycopersicum* L.) fruits. Effects of different doses of CPPU (0, 10, and 20 mg.L-1) at two different developmental stages were evaluated on the final fruit size and quality of tomato under field conditions. Statistical analyses showed that the effects of CPPU on fruit mass, volume, density, length and width were statistically significant in which the most significant effect was observed at 20 mg.L-¹ CPPU concentration. Paranjape (2014), while studying the effect of CPPU (Forchlorofenuron) on fruit set and post harvest quality of Mango Cv. Alphonso, reported that the maximum (321.5 kg) yield was noticed in the treatment 30 ppm CPPU.

Retamales *et al.* (2014) observed that the repeated applications of CPPU on highbush blueberry cv. Duke increased the yield and enhanced fruit quality at harvest and during postharvest. CPPU was applied at 5 and 10 ml/L at 3, 10, and/or 17 d after full bloom (DAFB) plus a non-sprayed control. Overall, 10 mL L-1 CPPU applied at 3+17 DAFB was the best treatment for year one, since it increased fruit yield and diameter, while soluble solids and postharvest weight loss were similar to control.

Khot *et al.* (2015) conducted the investigation to study the effect of foliar application of Gibberellic acid (40% WSG) and CPPU (1% SP) with regards to the concentration, stage and time of application on yield of grapes reported that the maximum yield was obtained from (40 ppm GA3 (Progibb 40% WSG) + 2 ppm CPPU (Cap-Plus 1% SP) i.e. 8.70 kg as compared to 4.60 kg in control.

2.2 Effect of foliar sprays of CPPU on physical characteristics of different fruit crops

2.2.1 Effect of foliar sprays of CPPU on weight of fruit

It is an important factor in judging its compactness, maturity, juice content, level of carbohydrate and other chemical constituents. The weight of a fruit also determines its acceptance to consumers and thereby, the market price of it.

Zilkah *et al.* (1995), while increasing 'hass' avocado fruit size by CPPU and GA_3 application when fruit size was plotted as function of fruit number per tree, reported that the CPPU treated fruits were larger than the control fruits for various yield levels on tree. The significant effect of CPPU on the average fruit weight was noticed.

Zabadal (2006), while studying the effect of CPPU on fruit development of selected seedless and seeded grape cultivars, reported that the berry size on cluster treated with 15 ppm CPPU was significantly greater than berries from cluster treated with 5 and 10 ppm at all measurement date.

Ahmed *et al.* (2007), while studying effect of concentrations and date of spraying Sitofex (CPUU) on yield and quality of Le-Conte pear fruits, observed that the maximum values (240 and 230 g in both seasons) were attained in the trees received one spray of 10 ppm Sitofex (CPPU) two weeks after fruit setting.

Abdel-Fattah *et al.* (2010) studied the effect of berry thinning, CPPU spraying and pinching on cluster and berry quality of two grapevine cultivars. CPPU spraying at full bloom characterized by giving the highest berries number compared to pinching ones. The increment percentage of berries number per cluster was (28.05, 26.82, 23.79, 18.07 and 19.29% average of the two seasons) due to CPPU spraying at 2.5 ppm or 5.0 ppm.

Fathi *et al.* (2011) reported that the Costata persimmon fruit size could be attributed directly to the CPPU effects. Exogenous application of CPPU acts early on cell division in the fruitlet and also on subsequent growth, while studying the effect of Sitofex (CPPU) and GA₃ Spray on fruit set, fruit quality, yield and monetary value of " Costata" Persimmon.

Bhat *et al.* (2012), while studying impact of new generation growth regulators (Brassinosteriods and CPPU) on quality parameters of grape Cv. Tas-A-ganesh, observed that the effect of growth regulator treatments, their time of application as well their interaction was significant on bunch weight. Maximum bunch weight (371.1 g) was recorded when growth regulators were applied twice i.e. on the 7th and15th DAFS compared to one dipping (7th or 15th DAFS). Among various treatments, T7 (CPPU 3 ppm+ BR 0.2 ppm + BA 20 ppm) produced the maximum bunch weight (371.1g) and lowest bunch weight was observed in control (268.6g).

Kumar *et al.* (2013) reported that the fruit weight, fruit length and fruit breadth were gradually increased by increasing the concentration of CPPU. The highest values of fruit weight (88.6 and 93.5 g), between thinning and CPPU concentrations, were significant. The heaviest and largest fruits were obtained by the application of CPPU @ 10 ppm.

Mousawinejad *et al.* (2014) studied effects of CPPU on size and quality of tomato fruits and they reported that the highest mass was observed in the treatment CPPU @ 20 ppm than other treatments i.e. CPPU as 10 ppm and control.

Paranjape (2014), while studying effect of CPPU (Forchlorofenuron) on fruit set and post harvest quality of Mango Cv. Alphonso, reported that the maximum (245.53 gm) fruit weight was recorded in 10 ppm CPPU treatment.

Patterson *et al.* (1993) reported that the CPPU on kiwifruit significantly increased the fruit growth by mid-January (52 days after fruit set). The control, dipped, and sprayed fruit had mean weights of 47, 63, and 62 gm, respectively. At harvest in mid-May (178 days after fruit set), the mean fruit weights were 110,158, and 146 gm, respectively.

Khot *et al.* (2015) studied the effect of foliar application of Gibberellic acid (40% WSG) and CPPU (1% SP) with regards to the concentration, stage and time of application on yield, quality, leaf

photosynthesis and biochemical changes in berries of grapes. The various GA₃ and CPPU concentrations alone or in combination had significant effects on bunch and berry characteristics. Data revealed that the spraying of GA3 concentration alone and in combination with CPPU increased the bunch weight. Maximum bunch weight (234.20 gm) was recorded with treatment 40 ppm GA3 (40 % WSG) + 2 ppm CPPU (1% SP) whereas for control, it was recorded as 111.70 gm.

2.2.2 Effect of foliar sprays of CPPU on volume of fruit

Al-saif (2011) studied the effect of plant growth regulators on fruit growth and quality development of *Syzygium samarangense* (water apple/wax apple) and observed higher fruit volume i.e. 64.4 ml/fruit in 15 ppm CPPU treatment than other treatments.

Kassem *et al.* (2011) studied productivity, fruit quality and profitability of jujube trees by pre harvest application of agrochemicals. They observed maximum value for volume i.e. 14 cm³ with for putrescine (PUT) @ in control 50 ppm, followed by 13.50 cm³ volume with CPPU treatment and 8.80 cm³ in control.

Kassem *et al.* (2011), while improving yield, quality and profitability of flame seedless grapevine grown under arid environmental by growth regulators preharvest applications, observed that the weight and volume of 100 berries increased by spraying of all treatments compared to control. The GA₃ and CPPU had similar and significantly higher weight and volume of 100 berries than other treatments.

Bhat *et al.* (2012), while studying impact of new generation growth regulators (Brassinosteriods and CPPU) on quality parameters of grape Cv. Tas-A-ganesh, reported that the maximum volume was measured (4.22) in the CPPU 3ppm + BR 0.2ppm + BA 20ppm and CPPU 3ppm + BR 0.4ppm + BA 20ppm treatments over control.

Mohamed *et al.* (2013) observed the effect of spraying of sitofex (CPPU) on fruit quality of table grapes and recorded that the post flowering treatments of CPPU improved the bunch development. Indeed bunch weight was markedly increased by 24, 31 and 20% as compared to control.

2.3 Effect of foliar sprays of CPPU on chemical composition of different fruit crops

2.3.1 Effect of foliar sprays of CPPU on total soluble solids (TSS)

Guirguis *et al.* (2003), while studying the effect of sitofex (cppu) on fruit set, fruit quality of Le conte pear cultivar, observed that 20 ppm CPPU treatment exhibited more TSS values (16.5°B) than the control (14°B) either applied at full bloom or 14 days after full bloom stage.

Kumar *et al.* (2013), while studying Effect of different concentration of CPPU and fruit thinning on yield and quality of Kiwifruit, reported that the different CPPU concentrations considerably increased the TSS. The highest total soluble solids were achieved when fruit vines were sprayed with 10 ppm CPPU during the two seasons.

Mohamed *et al.* (2013) studied the effect of spraying of sitofex (CPPU) on fruit quality of table grapes and they observed the decrease in soluble solid content in all treatments, expect the control.

Khot *et al.* (2015) studied the effect of foliar application of Gibberellic acid (40% WSG) and CPPU (1% SP) on grapes. The TSS was maximum (23.9° B) when 20 ppm GA3 (40% WSG) was applied which was higher than the control (20.10° B)

2.3.2 Effect of foliar sprays of CPPU on Titratable acidity (%)

Guirguis *et al.* (2003), while studying the effect of sitofex (cppu) on fruit set, fruit quality of le conte pear cultivar, reported an increase in the TSS content with 20 ppm CPPU treatment (16.5°B) and lowest (13.75°B) in the control.

Al-saif (2011) studied the effect of plant growth regulators on fruit growth and quality development of *Syzygium samarangense* (water apple/wax apple) and observed the highest increment in TSS content (8.3°B) in 15 ppm CPPU treated fruit, followed by the other treatments i.e. 10 and 20 ppm CPPU and control.

Fathi *et al.* (2011) reported sitofex (CPPU) application with 5 or 10 ppm at full bloom or at fruit set, significantly reduced the fruit juice acidity with increased total tannins content compared to control, especially with 5 ppm CPPU at fruit set.

Kassem *et al.* (2011), while studying productivity, fruit quality and profitability of jujube trees by preharvest application of agrochemicals, observed the fruit acidity in treatment CPPU @ 10 ppm was higher (0.50 %) than the control (0.44 %).

Bhat *et al.* (2012) studied the impact of new generation growth regulators (Brassinosteriods and CPPU) on quality parameters of grape cv. Tas-A-ganesh. They reported maximum TSS value (19.5°B) was observed with T5 (CPPU 2ppm + BR 0.4ppm + BA 20ppm) over control and other treatments. Kumar *et al.* (2013), while studying the effect of different concentrations of CPPU and fruit thinning on yield and quality of Kiwifruit, reported that the titrarable acidity decreased significantly with increasing CPPU concentration. The lowest acidity (1%) was achieved when fruit vines were sprayed with 10 ppm CPPU during the two seasons.

Khot *et al.* (2015) studied the effect of foliar application of Gibberellic acid (40% WSG) and CPPU (1% SP) with regards to the concentration, stage and time of application on yield, quality, leaf photosynthesis and biochemical changes in berries of grapes. They reported that the treatment CPPU @ 2 ppm + GA_3 @ 20 ppm showed higher acidity than other treatments and control.

2.3.3 Effect of foliar sprays of CPPU on sugars (reducing and total sugars)

Kassem *et al.* (2011), while studying productivity, fruit quality and profitability of jujube trees by preharvest application of agrochemicals, observed that the fruit reducing and non-reducing sugar content was increased by all different sprayed substances as compared to the control. No significant difference was obtained between salicylic acid and GA, putrescine, NAA and CPPU or between CaNO₃, control, CPPU and NAA on non-reducing sugars in fruit.

Kassem *et al.* (2011), while improving yield, quality and profitability of flame seedless grapevine grown under aried environmental, conditions by preharvest applications, of a growth regulators. They reported that total sugars content of the berry was increased by spraying SA, Eth, GA, CaCl, PUT and CPPU in both seasons.
Bhat *et al.* (2012) studied the impact of new generation growth regulators (Brassinosteriods and CPPU) on quality parameters of grape Cv. Tas-A-ganesh. They observed that the reducing sugars were maximum with CPPU 3ppm+ BR 0.4ppm+ BA 20ppm treatment (14.3%) and lowest percentage of reducing sugars was observed with CPPU @ 3ppm (11.6%) and CPPU @ 2ppm (11.7%).

Kumar *et al.* (2013), while studying the effect of different concentrations of CPPU and fruit thinning on yield and quality of Kiwifruit, showed that the different CPPU concentrations significantly increased the reducing and total sugar content of Kiwifruit cv. Allison and Hayward as compared to control.

Susila *et al.* (2013) studied the effect of exogenous application of CPPU and GA3 on yield, fruit quality character and seedlessness in watermelon. They observed that the total sugars were significantly highest in application of CPPU 200 ppm + GA 100 ppm (11.87%) and GA 100 ppm (11.39%).

Asaad (2014) reported the influence of spraying sitofex, iron, manganese and zinc on "Anna" apple trees planted on new reclaimed calcareous land. The maximum values were obtained from trees sprayed with 15 ppm CPPU + 10gm Fe + 7gm Mn + 10.5gm Zn/20L, water (42.28 and 42.52%) followed in a descending order by spraying with 10 ppm CPPU + 10gm Fe + 7gm Mn + 10.5gm Zn/20L water. The minimum values were obtained from control (36.33 and 36.33%) in both seasons under study.

Khot *et al.* (2015) studied the effect of foliar application of Gibberellic acid (40% WSG) and CPPU (1% SP) with regards to the concentration, stage and time of application on yield, quality, leaf photosynthesis and biochemical changes in the berries of grapes. They reported that the reducing sugars (215.6 mg/g) were found

higher with application of 40 ppm GA3 (40% WSG) as compared to other CPPU treatments and control (170 mg/g).

Pramanick *et al.* (2015), while studying effect of bioregulator and nutrient spray on fruit grade and quality of kiwi fruit, reported that the treatments significantly increased the total sugars as compared to control. The maximum total sugars (10.01%) was recorded in T-7 treatment and the minimum (8.5%) in untreated fruit.

CHAPTER III

MATERIAL AND METHODS

The present investigation entitled "Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and postharvest quality of pomegranate *(Punica granatum)* Cv. Bhagwa" was undertaken in the pomegranate orchard at-Post-Sakur, Tal- Sangamner, Dist- Ahmednagar (M.S.) during the year 2015-2016. During the investigation the fruit set and postharvest quality of pomegranate was studied. The experimental details pertaining to the material used and the techniques adopted are presented in this chapter.

3.1 Experimental material

The experiment was conducted in the pomegranate orchard At-Post-Sakur, Tal- Sangamner, Dist- Ahmednagar. The topography of experimental orchard was fairly uniform with a gentle gradient towards the eastern side. The orchard soil was light, fairly homogenous with good drainage.

Sakur is situated on the western Maharashtra region at an altitude of 601 meters above from mean sea level. It is located in tropical region at 19° 20' 54" North latitude and 74°17'56" East latitude. The climate of Sakur was hot and dry with average annual rainfall of578 mm, which normally distributed from June to September. The average relative humidity was about 20 per cent while average minimum and maximum temperatures are 22.4°C and 38.9°C, respectively. The topography of the experiment orchard was uniform. The main objectives of the study were as given below

1. To study the effect of foliar sprays of CPPU with GA_3 on fruit set of pomegranate cv. Bhagwa

2. To study the effect of post-harvest quality of pomegranate cv. Bhagwa after spraying of CPPU with GA₃

For conducting the experiment, the pomegranate Cv. Bhagwa trees having4 years old of age were used. The plant having uniform growth and vigour were selected randomly for the study. The CPPU (Forchlorofenuron) solution of 0.01 per cent concentration at different levels as described in the treatment details were used.

3.2 Experimental method

The experimental details are given as under

Experimental Design	: Randomized Block Design
(RBD)	
No. of Replications	: 08
No. of treatments	: 06
No. of fruits/treatment/replicat	tion:25
Cultivar	:Bhagwa

Treatment details

T1:At flowering 10ppm CPPU and

21, 42 and 63 DAF 10ppm CPPU

T2:At flowering 10ppm CPPU and

21, 42 and 63 DAF 20ppm CPPU +10 ppm GA3

T3:At flowering 10ppm CPPU and

21, 42 and 63 DAF 30ppm CPPU + 10 ppm GA3

T4:At flowering 10ppm CPPU and

21, 42 and 63 DAF40ppm CPPU + 10 ppm GA3

T5:At flowering 10ppm CPPU and

21, 42 and 63 DAF10 ppm GA3

T6: Control

(DAF: Days after flowering)

The uniform, 4 years old, pomegranate plants Cv. Bhagwa and 25 fruits were selected and tagged at flowering stage.

The first sprayingwas given at the time of flowering (10ppm CPPU) and subsequent 3 sprayings of CPPU were taken at 21 days interval with different concentrations as per the treatments. The tagged flowers and fruits were observed for different parameters like number of fruits set and percent fruit retention. After harvest, tagged fruits were brought to laboratory in plastic crates and wereanalysed for physico-chemical parameters of pomegranate fruit.

The fruits were sorted according to the treatments and kept in plastic crates to analyse thequality parameters like TSS (°B), acidity (%), and total sugar (%)under ambient storage condition.

3.3 Observations recorded

3.3.1 Fruit set (%)

Fruit set was estimated as number of fruit set per tag per plant.

3.3.2 Fruit drop (%)

Fruit drop was estimated as number of fruit dropped per tag per plant.

3.3.3 Yield (kg)

Yield was estimated at harvest by counting the number of fruits present on each tree.

3.3.3 Physical characteristics of pomegranate fruits

For this study, five fruits were randomly selected per treatment per replication per plant and observations were recorded on following physical parameters.

3.3.3.1Fruit weight (g)

Individual fruit was weighted on electronic balance (Model- Contech, India) and average weight of these fruits were recorded in grams.

3.3.3.2 Fruit volume (ml)

Individual fruit was completely dipped in a measuring cylinder filled with water up to brim. The volume of displaced water was noted and it was recorded in ml.

3.3.3.3 Specific gravity

Specific gravity of pomegranate fruit was determined by dividing the value of fresh weight of pomegranate fruit by the volume of the fruit.

3.3.4 Chemical parameters pomegranate of fruit

The randomly selected eight fruits from each treatment were used for estimating the following chemical constituents of the fruit after harvesting.

3.3.4.1 Total soluble solids (⁰B)

Total soluble solids were determined with the help of hand refractometer (Atago, India) and were expressed in ⁰Brix.

3.3.4.2 Titratable acidity (%)

A known quantity of sample was titrated against 0.1 N sodium hydroxide (NaOH) solution using phenolphthalein as an indicator (A.O.A.C., 1975). A known quantity of sample was blended in pestle and mortar with 20-25 ml distilled water. It was then transferred to 100ml volumetric flask and filtered. A

known volume of aliquot was titrated against 0.1 N NaOH solution using phenolphthalein as an indicator. The results were expressed as per cent anhydrous citric acid (Ranganna, 1986).

3.3.4.3 Reducing sugars

Reducing sugar content was determined by method of Lane and Eynon (1923) as reported by Ranganna (1986) as follows.

A known quantity of sample was taken in 250 ml volumetric flask. To this, 100 ml of distilled water was added and the contents were neutralized by 1 N sodium hydroxide. Then, 2 ml of 45 per cent lead acetate was added to it. The contents were mixed well and kept for 10 minutes. Exact quantity of potassium oxalate was added to it to precipitate the excess of lead. The volume was then made to 250 ml with distilled water and solution was filtered through filter paper. This filtrate was used for determination of reducing sugars by titrating it against the boiling mixture of Fehling 'A' and Fehling 'B' (5 ml each) using methylene blue as indicator. The results were expressed on per cent basis.

Formula

3.3.4.4 Total sugars

Total sugar content was determined by method of Lane and Eynon (1923) as reported by Ranganna (1986) as follows.

The total sugars were estimated by the same procedure of reducing sugar after acid hydrolysis of an aliquot of deleaded sample with 35 per cent hydrochloric acid, followed by neutralization with sodium hydroxide (40%). This filtrate was used for titration against standard Fehling's mixture (Fehling's A and B) using methylene blue as an indicator to brick red end point.

Formula

Factor x Dilution Total sugars (%) = x 100 Titre value x Wt. of sample taken

3.3.5 Sensory-evaluation

The fruits were evaluated for their sensory qualities after harvesting for accessing the colour, flavour and texture. It was carried out by panel of 5 judges with 9 point Hedonic scale score (Amerine *et al.*, 1965) as given below.

Sensory Score	Rating
9	Like extremely
8	Like very much
7	Like moderately
6	Like slightly
5	Neither like nor dislike
4	Dislike slightly

3	Dislike moderately
2	Dislike very much
1	Dislike extremely
	(Source: Amerine et al., 1965)

The overall rating was obtained by averaging score of evaluation. The fruits with score of 5.5 and above were rated as acceptable.

3.3.6 Statistical analysis

The data obtained was analysed statistically as per the method suggested by Panse and Sukhatme (1985). The standard error of mean (S.Em.) was worked out and the critical difference (C.D.) at 5 per cent was calculated whenever the results were found significant. The important results have been supported through graphs and plates.

CHAPTER IV

RESULTS AND DISCUSSION

The present investigation entitled "Effect of CPPU (Forchlorofenuron) with GA₃(Gibberellic acid)on fruit set and post harvest quality of pomegranate Cv. Bhagwa" was undertaken in the pomegranate orchard at Sakur, Tal-Sangamner, Dist-Ahmednagar (M.S.) during the year 2015-2016. The results obtained are presented and discussed as under.

4.1 Effect of foliar sprays of CPPUon fruit set, fruit drop and yield of pomegranate Cv. Bhagwa

4.1.1 Fruit set (%)

The data on effect of foliar sprays of different concentrations of CPPU with GA₃ in fruit set in pomegranate Cv. Bhagwa are presented in Table 01 and illustrated with Fig 01. From the data it was revealed that the fruit set was varied due to various concentrations of CPPU with GA₃.

There was significant effect of different concentrations of CPPU withGA₃sprays on fruit set21 days after flowering. The maximum fruit set was recorded in T₃ (87.50%) which was significantly superior over all other treatments, followed by T₂ (81.50%). However, the treatmentT₂ (81.50%) was superior to the treatmentsT₁ (75.50%), T₄ (74.00%), T₅ (70.00%),T₆ (66.50%). The minimum fruit set was noticed in T₆ (66.50%) which was at par with T₅(70.00%)

Similar trend was also observed on 42 days after flowering. The maximum fruit set was observed in the treatment T_3 (81.00%) which was followed by T_2 (74.00%), T_1 (66.50%), T_4 (63.00%), T_5 (58.00%). The minimum fruit set was noticed in T_6 (51.00%).

Significant effect was also observed 63 days after flowering when different concentrations of CPPU with GA₃ sprays were given. The maximum fruit set was observed in the treatment T₃ (78.50%) which was at par with T₂ (71.50%) which is followed by T₁ (64.50%), T₄ (56.50%), T₅ (51.00%). The minimum fruit set was noticed in T₆ (41.50%). The CPPU has a promoting effect on fruit set and reducing ABA content, due to the physiological basis of CPPU action in promoting fruit setting and fruit enlargement (Fathi et. al., 2011).

The observations similar to this findings were also reported by Guirguis*et al.* (2013) in Le Conte Pear and Paranjape (2014) in mango.

4.1.2 Fruit Drop (%)

The data on effect of foliar sprays of different concentrations of CPPU with GA₃ in fruit drop in pomegranate Cv. Bhagwa are presented in Table 02 and illustrated with Fig 02. From the data, it was revealed that the fruit drop was significantly varied due to foliar sprays of different concentrations of CPPU with GA₃.

There was significant effect of different concentrations of CPPU with GA₃sprays on fruit drop 21 days after flowering. The maximum fruit drop was recorded in T₆ (33.50%) which was at par with T₅ (30.00%), followed by T₄ (26.00%), T₁ (24.50%), T₂ (18.50%). The minimum fruit drop was noticed in T₃ (12.50%).

Similar trend of fruit drop was also observed on 42 days after flowering. The maximum fruit drop was observed in the treatment $T_6(49.00\%)$ followed by the treatment T_5 (42.00%), T_4 (37.00%), T_1 (33.50%) and $T_2(26.00\%)$. The minimum fruit drop was noticed in T_3 (19.00%).

Significant effect was also observed on 63 days after flowering when different concentrations of CPPU with GA₃ sprays were given. The maximum fruit drop was observed in the treatment T₆ (58.50%) which was significantly superior over all other treatments, followed by T₅ (49.00%), T₄ (43.50%), T₁ (35.50%) and T₂ (28.50%). But treatment T₅ (49.00%)was at par with T₄ (43.50%) and significantly superior over T₁ (28.5%) and T₂ (28.50%). The minimum fruit drop was noticed in T₃ (21.50%). which was at par with T₁ (28.5%).

In general, it was observed that all CPPU and GA₃ treatment exhibited significant effect on reducing the fruit drop over control.Similar findings were observed by Ahmed *et al.* (2007) in Le-Conte pear; Curry *et al.* (1993) in apple and Guirguis*et al.* (2003) in Le-Conte pear.

4.1.3 Fruit yield (kg)

The data on effect of foliar sprays of CPPU with GA₃on yield of pomegranate Cv. Bhagwa are presented in Table 03and illustrated with Fig 03.

The pattern of variation in fruit yield on pomegranate Cv. Bhagwa was affected by foliar sprays of different concentrations CPPU with GA₃. The data presented in the Table 03 showed that the fruit yield was significantly increased in terms of Kg fruits/plant. The maximum yield was noticed in $T_3(25.49 \text{ Kg})$ which was at par with T_2 (23.69 Kg) and was followed by T_4 (18.93 Kg), T_5 (17.09 Kg), T_1 (16.71 Kg) and minimum yield was reported in T_6 (16.07 Kg) which was at par with T_1 (16.71 Kg), T_5 (17.09 Kg), and T_4 (18.93 Kg).

The observations regarding the effect of CPPU on different fruit crops were also reported by several workers viz., Ahmed *et al.* (2007) in pear fruits; Kumar *et al.* (2013) in kiwi fruits; Fathi *et al.* (2011) in persimmon; Susila *et al.* 2013 in watermelon; Pramanick *et al.* (2015) in kiwi; Paranjape (2014) in mango.

4.2 Effect of foliar sprays of different concentrations of CPPU with GA₃ on fruits of pomegranate Cv. Bhagwa

The data on physical parameters of fruits viz., weight, volume and specific gravity are recorded after harvest are presented in Tables 05 to 07.

4.2.1. Fruit Weight (g)

The data on effect of foliar sprays of different concentrations of CPPU with GA₃on weight of the fruit in pomegranate Cv. Bhagwa are presented in Table 04 and illustrated with Fig 04. From the data it was revealed that the fruit weight was varied due to foliar sprays of different concentrations of CPPU with GA₃.

At harvest, there was significant effect of foliar sprays of different concentrations of CPPU with GA₃ on fruit weight of pomegranate. The maximum fruit weight recorded in T₃ (301.1 g),which was at par with T₄ (299.67 g), T₅ (285.89 g) and T₂ (285.5 g). The minimum fruit weight was noticed in T₆ (270.37 g)which was at par with T₁ (277.55 g), T₅ (285.89 g) and T₂ (285.5 g).The different concentrations of CPPU with GA₃ had significant effect on increasing the fruit weight of pomegranate. The increase in fruit weight may be due to application of CPPU which might be described to its positive action on enhancing both cell division and cell elongation as well great role in activating the biosynthesis of proteins, RNA and DNA (Nickell, 1985)

The observations similar to this findings were also reported byKhot *et al.* (2015) in grapes; Paranjape (2014) in mango; Susila *et.al (*2013) in watermelon; Ahmed *et al.* pear; Cruz-Castillo *et al.* (2014) in kiwi; Fathi *et al.* (2011) in perssimon; Guirguis *et al.* (2003) in Le-Conte pear and Kumar *et al.* (2013) in kiwi.

4.2.2. Fruit Volume(ml)

The data on effect of foliar sprays of different concentrations of CPPU with GA_3 on fruit volume in pomegranate Cv. Bhagwa are presented in Table 05 and illustrated with Fig. 05.

From the data, it was revealed that the fruit volume was varied due to foliar sprays of different concentrations of CPPU with GA₃.

At harvest, there was significant effect of different concentrations of CPPU with GA₃ on fruit volume of pomegranate. The maximum fruit volume recorded in T_4 (270.74 ml), which was at par with T_3 (265.65 ml) and T_2 (254.79 ml). The minimum fruit volume was noticed in T_6 (233.13 ml)which was at par with T_5 (242.41 ml), T_1 (245.46 ml) and T_2 (254.79 ml).

Exogenous application of CPPU acts early on cell division in the fruit let and also on subsequent growth. Thus, the fruit becomes bigger in size due to the efficient cells, the building blocks of fruit mass and also because the cells have been able to attract so much water, minerals and carbohydrates that enable the fruit to expand to large size (Kano, 2003).

The observations similar to this findings were also reported by Mousawinjad *et al.* (2014) in tomato and Paranjape (2014) in mango.

4.2.3. Specific gravity

The data on effect of foliar sprays of different concentrations of CPPU with GA₃on specific gravity of the fruit in pomegranate Cv. Bhagwa are presented in Table 06 and illustrated with Fig.06.

At harvest, there was non-significant effect of different concentrations of CPPU with GA₃ on specific gravity of pomegranate. The maximum specific gravity numerically was recorded in T_4 (1.156), followed by treatments T_5 (1.151), T_6 (1.133), T_3 (1.132) and T_2 (1.127). The minimum specific gravity was noticed in T_6 (1.113).

The observations similar to this finding were also reported by Paranjape (2014) in mango.

4.2.4 Colour value (L*, a* and b* value)

4.2.4.1. L* value for colour

The data on the effect of foliar sprays of different concentrations of CPPU with GA₃on L* value for colour of pomegranate juice after harvest are presented in Table 07 and depicted at Fig.07. The L* value represents lightness of the peel.

It was observed from the data that there was a significant effect of foliar sprays of different concentrations of CPPU and GA₃on L* value for colour. Highest L* value for colour was observed in the treatment T_1 (51.67) which was significantly superior to all other treatments and it was followed by T_4 (50.89), T_6 (50.83) T_5 (49.65)and T_2 (45.04). The lowest L* value for colourwas recorded in T_3 (44.49).

4.2.4.2 a* value for colour

The data on the effect of foliar sprays of different concentrations of CPPU with GA₃on a* value for colour of pomegranate juice after harvest are presented in Table 07 and depicted at Fig.07. It was observed from the data that there was a significant effect on a* value for colour. Highest a* value was observed in thetreatment T_5 (43.89) which was significantly superior to all other treatments, followed by T_3 (41.57), T_1 (39.99) T_6 (39.72) and T_2 (39.18). The lowest value was recorded for T_4 (38.83).The a* value for colour denotes red colour and the application of different concentrations of CPPU with GA₃ had significant effect on red colour development. CPPU seemed to increase red pigmentation in the commercial field trial (Curry and Greene, 1993).

4.2.4.3 b* value for colour

The data on the effect of foliar sprays of different concentrations of CPPU with GA₃onb* value for colour of pomegranate juice after harvest are presented in Table 07 and depicted at Fig.07. It was observed from the data that there was a significant effect on b* value of colour. Highest b* value was observed in the treatment T₃ (16.88), followed by the treatment T₅ (15.59), T₁ (14.42), T₆ (13.12) and T₂ (13.09). But treatment T₆ (13.12) and T₂ (13.09) were at par with each other. The lowest value was recorded for T₄ (12.28).

4.3 Effect of foliar sprays of different concentrationsCPPU with GA_3 on chemical composition of fruit

4.3.1. TSS (°B)

The data regarding the effect foliar sprays of different concentrations CPPU with GA_3 on TSS (°B) in pomegranate Cv. Bhagwafruits are presented in Table 08 and illustrated with Fig 08.

After harvest, there was significant effect of different concentrations CPPU with GA₃on TSS. The maximum TSS was recorded in the treatment T_3 (16.05° B), which was at par with $T_2(15.86 \text{ °B})$, T_1 (15.56 °B) and T_4 (15.55°B). The minimum TSS was recorded in T_6 (14.36 °B)which was at par with T_5 (14.81°B). This increase in TSS and sugar content with CPPU application may be attributed to early ripening induced by CPPU due to more ethylene evolution (Costa et al., 1997).

The observations similar to this findings were also reported by Bhat *et al.* (2012); Curry *et al.* (1993) in apple; Fathi *et al.* (2011) in Persimmon; Guirguis *et al.* (2003) in Le-Conte pear; Hassan *et al.* (2009) in banana; Kumar *et al.* (2013) in kiwi; Pramanick *et al.* (2015) in kiwi and Susila *et al.* (2013) in watermelon.

4.3.2 Titratable Acidity (%)

While the observation of effect of foliar sprays of different concentrations of CPPU and GA₃on acidity (%) of pomegranate Cv. Bhagwafruits are presented in Table 09 and illustrated with Fig. 09.

After harvest, there was non-significant effect CPPU on acidity. Numerically the maximum acidity was assessed in T_6 (0.256 %), which was followed by the $T_5(0.252 \%)$, T_2 (0.251%), T_4 (0.250 %), T_1 (0.248%) and the minimum acidity was found in T_3 (0.246 %).

The observations similar to this findings were also reported by Ahmed *et al.* (2007); Curry *et al.* (1993) in apple; Hassan *et al.* (2009) in banana; Kumar *et al.* (2013) in kiwiand Paranjape (2014) in mango.

4.3.3 Reducing sugars (%)

The data on the effect of foliar sprays of different concentrations of CPPU and GA_3 on reducing sugars (%) of pomegranate Cv. Bhagwa fruits are presented in Table 10 and illustrated with Fig. 10.

After harvest, there was non-significant effect of CPPU on reducing sugar content on the fruit. It was maximum numerically in the treatment T_5 (11.04 %), which was followed by the T_1 (11.02 %), T_2 (10.37 %), T_3 (10.11 %), T3 (10.01%) and the minimum in T_4 (9.99 %).

The observations similar to this findings were also reported by Ahmed *et al.* (2007); Kumar *et al.* (2013) in kiwi and Paranjape (2014) in mango.

4.3.4 Total sugars (%)

The data on the effect foliar sprays of different concentrations of CPPU and GA₃ on total sugars (%) in fruits of pomegranate Cv. Bhagwa are presented in Table 11 and illustrated with Fig. 11.

After harvest, there was non-significant effect of CPPU on total sugar. It was maximum numerically in T_5 (12.03%) which was followed by T_1 (11.80%), T_2 (11.49%), T_3 (11.41%) and T_6 (11.23%) and where it was minimum in T_4 (11.03%).

The observations similar to this findings were also reported by Kumar *et al.* (2013) in kiwiand Paranjape (2014) in mango.

4.4 Sensory evaluation of pomegranate Cv. Bhagwa fruits

The data regarding effect of foliar sprays of different concentrations of CPPU and GA₃ on sensory evaluation of

pomegranate Cv. Bhagwafruits at mature stage are presented in Table 12 and illustrated with Fig. 12.

The variation recorded for score of fruit colour was significant after harvesting. The average sensory colour score of fruits after harvesting was 7.85. It was observed maximum in treatment $T_4(8.22)$, which was at par with T_3 (8.17) and T_5 (7.97) followed by T_1 (7.63) and T_6 (7.58). The minimum colour score was observed in the treatment $T_2(7.55)$ which was at par with T_6 (7.58) and T_1 (7.63); T_1 (7.63).

Among the different treatments, the variation was recorded for flavour score of fruits was non-significant different after harvesting. The average flavour score after harvesting was 7.88. It was numerically maximum in the treatment $T_3(8.17)$ followed by T_5 (8.0), T_4 (7.97), $T_2(7.92)$, T_1 (7.75). The minimum score for flavour of fruits was recorded in treatment $T_6(7.5)$.

Also the variation was recorded for sensory score for texture of fruits after harvesting was 7.81. The variation recorded for texture score of fruit was non-significant. It was numerically maximum in the treatment T_3 (8.13) which was followed by treatments T_4 (7.92), T5 and T_2 (7.83), T1 (7.67). The minimum score of texture in fruits was recorded in the treatment T_6 (7.5).

The average score for fruits after harvesting was 7.85. However, the significant variation was recorded for average score of fruit. It was maximum in the treatment T_3 (8.15) which was followed by treatments T_4 (8.06), T_5 (7.93) and T_2 (7.76). The minimum average score of fruits was recorded in the treatment T_6 (7.53) i.e. control.

4.5Cost of cultivation of pomegranate Cv. Bhagwa

The economics for cost of cultivation f pomegranate is presented in Table 13. It could be observed from the data that the net cost for produce was highest (Rs. 299518.60) in T_4 and lowest (Rs. 272401.85) in the treatment T_6 .

Higher produce output was of (Rs. 1176410) found in treatment T_3 and lowest produce output was of (Rs. 741638.58)found in treatment T_6 .

The data for cost of cultivation revealed that the lowest cost per quintal was observed in treatment T_3 (Rs. 1343.30) and highest cost per quintal was observed in treatment T_6 (Rs.1978.08).

The highest production (218.44 quintals), produce outcome Rs.1176410 and lowest (Rs. 1343.30) cost per quintal was observed in treatment T_3 which is also superior in overall acceptability over all other treatments.

Table 01: Effect of foliar sprays of different concentrations of
CPPU with GA3 on fruit set(%)inpomegranate Cv.
Bhagwa

	Fruit set (%)			
Treatment	Days after Flowering			
	21 days	42 days	63 days	
T ₁ :(10 ppm CPPU)	75.50	66.50	64.50	
T ₂ : T ₁ +(20 ppmCPPU + 10 ppm GA ₃)	81.50	74.00	71.50	
T ₃ : T ₁ + (30 ppm CPPU+ 10 ppm GA ₃)	87.50	81.00	78.50	
T ₄ : T ₁ + (40 ppmCPPU + 10 ppm GA ₃)	74.00	63.00	56.50	
T ₅ : T ₁ + (10 ppm GA ₃)	70.00	58.00	51.00	
T ₆ :(Control)	66.50	51.00	41.50	
Mean	75.83	65.58	60.58	
S. Em ±	1.95	2.43	2.85	
C.D at 5%	4.86	6.05	7.09	

Fig. 01: Effect of foliar sprays of different concentrations of CPPU and GA₃ on fruit set (%) in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 02: Effect of foliar sprays of different concentrations ofCPPUwith GA3 on fruit drop (%) in pomegranate Cv. Bhagwa

		Fruit drop (%)	
Treatment	Days after Flowering		
	21 days	42 days	63 days
T ₁ : (10 ppm CPPU)	24.50	33.50	35.50
T ₂ : T ₁ + (20 ppm CPPU + 10 ppm GA ₃)	18.50	26.00	28.50
T ₃ : T ₁ + (30 ppm CPPU + 10 ppm GA ₃)	12.50	19.00	21.50
T ₄ : T ₁ + (40 ppm CPPU + 10 ppm GA ₃)	26.00	37.00	43.50
T ₅ : T ₁ + (10 ppm GA ₃)	30.00	42.00	49.00
T ₆ :(Control)	33.50	49.00	58.50
Mean	24.16	34.41	39.41
S. Em ±	1.95	2.43	2.85
C.D at 5%	4.86	6.05	7.09

Fig.02: Effect of foliar sprays of different concentrations of
CPPU with GA3 on fruit drop (%) in pomegranate Cv.Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 03: Effect of foliar sprays of different concentrations of CPPU with GA_3 on yield in pomegranate Cv. Bhagwa

	Fruit yield at	
The star suctor	harvest (kg)	
Ireatments	Kg/	
	plant	Kg/ha
T ₁ : (10 ppm CPPU)	16.71	14320
T ₂ : T ₁ +(20 ppm CPPU + 10 ppm GA ₃)	23.69	20302
T ₃ : T ₁ + (30 ppm CPPU + 10 ppm GA ₃)	25.49	21844
T ₄ : T ₁ + (40 ppm CPPU + 10 ppm GA ₃)	18.93	16223
T ₅ : T ₁ + (10 ppm GA ₃)	17.09	14646
T ₆ : (Control)	16.07	13771
Mean	19.66	16851
S. Em ±	2.07	
C. D. at 5%	5.16	

Fig. 03:Effect of foliar sprays of different concentrations of CPPU with GA₃ on yield in pomegranate Cv. Bhagwa

- T1: (10 ppm CPPU)
 T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
 T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
 T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
 T5: T1 + (10 ppm GA₃)
- T_6 : (Control)

Table 04: Effect of foliar sprays of different concentrations of CPPU with GA₃ on fruit weight in pomegranate Cv. Bhagwa

Treatments	Fruit weight (g)
	At harvest
T ₁ :(10 ppm CPPU)	277.55
T ₂ : T1 + (20 ppm CPPU + 10 ppm	
GA ₃)	285.50
T ₃ : T1 + (30 ppm CPPU + 10 ppm	
GA ₃)	301.10
$T_4: T1 + (40 \text{ ppm CPPU} + 10 \text{ ppm})$	299.67
T ₅ : T1 + (10 ppm GA ₃)	285.89
T ₆ :(Control)	270.37
Mean	286.68
S. Em ±	8.72
C. D. at 5%	21.69

Fig. 04: Effect of foliar sprays of different concentrations of CPPU with GA₃ on fruit weight in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 05: Effect of foliar sprays of different concentrations of
CPPU with GA3 on fruit volume in pomegranate Cv.Bhagwa

	Fruit volume	
Treatments	(ml)	
	At harvest	
T ₁ :(10 ppm CPPU)	245.46	
T ₂ : T1 + (20 ppm CPPU + 10 ppm GA ₃)	254.79	
T ₃ : T1 + (30 ppm CPPU + 10 ppm GA ₃)	265.65	
T ₄ : T1 + (40 ppm CPPU + 10 ppm GA ₃)	270.74	
T ₅ : T1 + (10 ppm GA ₃)	242.41	
T ₆ :(Control)	233.75	
Mean	252.13	
S. Em ±	9.81	
C. D. at 5%	24.39	

Fig.05: Effect of foliar sprays of different concentrations of CPPU with GA₃ on fruit volume in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)

- **T₂:** T1 + (20 ppm CPPU + 10 ppm GA₃)
- **T₃:** T1 + (30 ppm CPPU + 10 ppm GA₃)
- **T₄:** T1 + (40 ppm CPPU + 10 ppm GA₃)
- **T**₅: T1 + (10 ppm GA₃)
- T_6 : (Control)

Table 06: Effect of foliar sprays of different concentrations of CPPU with GA₃ on specific gravity of fruits in pomegranate Cv. Bhagwa

Treatments	Specific gravity	
ireatments	At harvest	
T ₁ :(10 ppm CPPU)	1.127	
T ₂ : T ₁ +(20 ppm CPPU + 10 ppm GA ₃)	1.113	
T ₃ : T ₁ +(30 ppm CPPU + 10 ppm GA ₃)	1.132	
T ₄ : T ₁ +(40 ppm CPPU + 10 ppm GA ₃)	1.156	
T ₅ : T ₁ +(10 ppm GA ₃)	1.151	
T ₆ :(Control)	1.133	
Mean	1.135	
S. Em ±	0.022	
C. D. at 5%	NS	

Fig. 06: Effect of foliar sprays of different concentrations of CPPU with GA₃ on specific gravity of fruits in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 07: Effect of foliar sprays of different concentrationsCPPUwith GA3 L* value, a* value and b* value forcolour offruits juice of pomegranate Cv. Bhagwa

Treatment	L* Value	a* Value	b* Value
T ₁ :(10 ppm CPPU)	51.67	39.99	13.09
T ₂ : T ₁ +(20 ppm CPPU + 10 ppm GA ₃)	45.04	39.18	14.42
T ₃ : T ₁ +(30 ppm CPPU + 10 ppm GA ₃)	44.49	41.57	16.88
T ₄ : T ₁ +(40 ppm CPPU + 10 ppm GA ₃)	50.89	38.83	12.28
T ₅ : T ₁ +(10 ppm GA ₃)	49.65	43.89	15.59
T ₆ :(Control)	50.83	39.72	13.12
MEAN	48.76	40.53	14.23
S Em±	0.20	0.05	0.07
C. D.	0.51	0.13	0.18

Table 07: Effect of foliar sprays of different concentrationsCPPUwith GA3 L* value, a* value and b* value forcolour offruits juice of pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 08: Effect of foliar sprays of different concentrations ofCPPUwith GA3 on TSS °Brix of fruits in pomegranateCv.Bhagwa

Treatments	TSS (°B)	
	At harvest	
T ₁ :(10 ppm CPPU)	15.56	
T ₂ : T1 + (20 ppm CPPU + 10 ppm GA ₃)	15.86	
T ₃ : T1 + (30 ppm CPPU + 10 ppm GA ₃)	16.05	
T ₄ : T1 + (40 ppm CPPU + 10 ppm GA ₃)	15.55	
T ₅ : T1 + (10 ppm GA ₃)	14.81	
T ₆ : (Control)	14.36	
Mean	15.36	
S. Em ±	0.23	
C. D. at 5%	0.58	
Fig. 8: Effect of foliar sprays of different concentrations of CPPU with GA₃on TSS °Brix of fruits in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 09: Effect of foliar sprays of different concentrations of
with GA3 on acidity (%) of fruits in pomegranateCv.Bhagwa

Treatments	Titratable Acidity (%)		
	At harvest		
T ₁ :(10 ppm CPPU)	0.251		
T ₂ : T ₁ +(20 ppm CPPU + 10 ppm GA ₃)	0.248		
T ₃ : T ₁ +(30 ppm CPPU + 10 ppm GA ₃)	0.246		
T ₄ : T ₁ +(40 ppm CPPU + 10 ppm GA ₃)	0.250		
T ₅ : T ₁ +(10 ppm GA ₃)	0.252		
T ₆ : (Control)	0.256		
Mean	0.250		
S. Em ±	0.008		
C. D. at 5%	NS		

Fig. 09: Effect of foliar sprays of different concentrations of CPPU with GA₃on acidity (%) of fruits in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 10: Effect of foliar sprays of different concentrations of
CPPUwith GA3 on reducing sugars of fruits in
pomegranate Cv. Bhagwa

Treatments	Reducing sugar (%)
	At harvest
T ₁ : (10 ppm CPPU)	11.02
T ₂ : T ₁ + (20 ppm CPPU + 10 ppm GA ₃)	10.37
T ₃ : T ₁ + (30 ppm CPPU + 10 ppm GA ₃)	10.01
T ₄ : T ₁ + (40 ppm CPPU + 10 ppm GA ₃)	9.99
$T_5: T_1 + (10 \text{ ppm GA}_3)$	11.04
T ₆ : (Control)	10.11
Mean	10.42
S. Em ±	0.57
C. D. at 5%	NS

Fig. 10: Effect of foliar sprays of different concentrations of CPPUwith GA₃on reducing sugar (%) of fruits in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

Table 11: Effect of foliar sprays of different concentrations of
CPPU with GA3 on total sugars in fruits of
pomegranate Cv. Bhagwa

Treatments	Total sugar (%)		
	At harvest		
T ₁ :(10 ppm CPPU)	11.80		
T ₂ : T ₁ + (20 ppm CPPU + 10 ppm GA ₃)	11.49		
T ₃ : T ₁ + (30 ppm CPPU + 10 ppm GA ₃)	11.41		
T ₄ : T ₁ + (40 ppm CPPU + 10 ppm GA ₃)	11.03		
T ₅ : T ₁ + (10 ppm GA ₃)	12.03		
T ₆ :(Control)	11.23		
Mean	11.50		
S. Em ±	0.35		
C. D. at 5%	NS		

Fig. 11: Effect of foliar sprays of different concentrations of CPPU with GA₃ on total sugars in fruits of pomegranate Cv. Bhagwa

T ₁ :	(10 ppm CPPU)
T ₂ :	T1 + (20 ppm CPPU + 10 ppm GA ₃)
T ₃ :	T1 + (30 ppm CPPU + 10 ppm GA ₃)
T 4:	T1 + (40 ppm CPPU + 10 ppm GA ₃)
T 5:	T1 + (10 ppm GA ₃)
T 6:	(Control)

		~						
Treatments	Sensory score for							
Treatments	Colour	Flavour	Texture	Overall				
				acceptability				
T ₁ :(10 ppm CPPU)	7.63	7.75	7.67	7.68				
T ₂ : T ₁ +(20 ppm CPPU								
+ 10 ppm GA ₃)	7.55	7.92	7.83	7.76				
T ₃ : T ₁ +(30 ppm CPPU								
+ 10 ppm GA ₃)	8.17	8.17	8.13	8.15				
T ₄ : T ₁ +(40 ppm CPPU								
+ 10 ppm GA ₃)	8.22	7.97	7.92	8.06				
T ₅ : T ₁ +(10 ppm GA ₃)	7.97	8	7.83	7.93				
T ₆ : (Control)	7.58	7.5	7.5	7.53				
Mean	7.85	7.88	7.81	7.85				
S. Em ±	0.16	0.16	0.2	0.14				
C. D. at 5%	0.45	NS	NS	0.4				

Table 12: Effect of foliar sprays of different concentrations of CPPU with GA₃ on sensory evaluation of ripe fruits in pomegranate Cv. Bhagwa

Fig. 12: Effect of foliar sprays of different concentrations of CPPU with GA₃ on sensory evaluation of ripe fruits in pomegranate Cv. Bhagwa

T1: (10 ppm CPPU)
T2: T1 + (20 ppm CPPU + 10 ppm GA₃)
T3: T1 + (30 ppm CPPU + 10 ppm GA₃)
T4: T1 + (40 ppm CPPU + 10 ppm GA₃)
T5: T1 + (10 ppm GA₃)
T6: (Control)

PLATE I: Effect of different concentrations of CPPU(Forchlorofenuron)with GA3 (Gibberellic acid) on fruit set atmature stage ofpomegranate Cv.Bhagwa

with GA₃ (Gibberellic acid) on post-harvest quality of pomegranate Cv. Bhagwa

Treatment 1

Treatment 3

Treatment 5

Treatment 2

Treatment 4

Treatment 6

TABLE	13:	Cost	of	production	of	pomegranate
-------	-----	------	----	------------	----	-------------

Sr	Cost item	Quantity	Rate	\mathbf{T}_1	T ₂	T ₃	T 4	T 5	Т 6
no									
1	Hired human labours (day)								
	i. Male	67.46	295.23	19916.54	19916.54	19916.54	19916.54	19916.54	19916.54
	ii. Female	46.59	144.66	6739.70	6739.70	6739.70	6739.70	6739.70	6739.70
2	Bullock power (Pair days)	0.20	137.62	227.4	227.4	227.4	227.4	227.4	227.4
3	Machine powers (Hrs)	111.08	39.84	4425.42	4425.42	4425.42	4425.42	4425.42	4425.42
4	Manures(QHS)	182.13	235.83	42952.71	42952.71	42952.71	42952.71	42952.71	42952.71
5	Fertilizers(Kgs)								
	I. Nitrogen	45.52	66.71	3036.63	3036.63	3036.63	3036.63	3036.63	3036.63
	II. Phosphorus	125.24	64.13	8031.64	8031.64	8031.64	8031.64	8031.64	8031.64
	II. Potash	116.40	44.60	5191.44	5191.44	5191.44	5191.44	5191.44	5191.44
6	Irrigation charges			13282.41	13282.41	13282.41	13282.41	13282.41	13282.41
7	Bio – fertilizer/micro nutrient			13244.80	13244.80	13244.80	13244.80	13244.80	13244.80
8	Plant protection charge			22893.14	22893.14	22893.14	22893.14	22893.14	22893.14
9	Incidental charge			3242.74	3242.74	3242.74	3242.74	3242.74	3242.74
10	Repair on farm implement			282.24	282.24	282.24	282.24	282.24	282.24
11	Growth regulator			7638.4	14139.6	19859.6	25606	2690.8	0.00

12	Working capital (1 to 11)			151105.21	157606.41	163326.41	169072.81	14615.61	143466.81
13	Interest on working capital			8915.20	9298.77	9636.25	9975.29	8623.29	8464.54
14	Depreciation on farm implement			4042.23	4042.23	4042.23	4042.23	4042.23	4042.23
15	Land revenue and other taxes			108.05	108.05	108.05	108.05	108.05	108.05
16	Cost A (12 to 15)			164170.69	171055.46	177112.94	183198.38	158931.18	156081.63
17	Rental value of land			72008.58	72008.58	72008.58	72008.58	72008.58	72008.58
18	Interest on fixed capital			9824.64	9824.64	9824.64	9824.64	9824.64	9824.64
19	Amortization cost			729286	7292.86	7292.86	7292.86	7292.86	7292.86
20	Cost B (16 to 19)			253296.77	260181.54	266239.02	272324.46	248057.26	245207.71
21	Family labour (days)								
	I. Male	80.24	248.22	19917.17	19917.17	19917.17	19917.17	19917.17	19917.17
	II. Female	52.39	138.90	7276.97	7276.97	7276.97	7276.97	7276.97	7276.97
22	Cost C (20+21)			280490.91	287375.68	293433.14	299518.6	275251.4	272401.85
23	Produce output (Quintals)	$\begin{array}{c} T_1\text{-}143.20\\ T_2\text{-}203.02\\ T_3\text{-}218.44\\ T_4\text{-}162.23\\ T_5\text{-}146.46\\ T_6\text{-}137.71 \end{array}$	5385.5 1	771205.03	1093336.62	1176410	873691.28	788761.79	741638.58
24	Cost (Net produce)			280490.91	287375.68	293433.14	299518.6	275251.4	272401.85

	25	Per quintal cost			1958.73	1415.50	1343.3	1846.25	1877.56	1978.08
--	----	------------------	--	--	---------	---------	--------	---------	---------	---------

CHAPTER V

SUMMARY AND CONCLUSION

The investigation entitled "Effect CPPU present of with GA₃ (Gibberellic acid) on fruit (Forchlorofenuron) set and postharvest quality of pomegranate (Punica granatum) Cv. Bhagwa " was undertaken in the pomegranate orchard at-Post- Sakur, Tal-Sangamner, Dist- Ahmednagar (M.S.) during the year 2015-2016. During the investigation, the fruit set and postharvest quality of pomegranate were studied. The results obtained are presented and discussed as under.

5.1 Effect of foliar sprays of different concentrations of CPPU with GA_3 on fruit set, fruit drop and yield of pomegranate Cv. Bhagwa

5.1.1 Fruit set (%)

Investigation on the effect of sprays of different concentrations CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of Pomegranate Cv. Bhagwa indicated that the difference for fruit set and retention significantly increased per tree. The maximum fruit set recorded in T₃ (87.50%) 21 days after flowering, while minimum fruit set was noticed in T₆ (66.50%). After 42 days of flowering, the maximum fruit set was recorded in T₃ (81.00%) while minimum fruit set was noticed in T₆ (51.00%). The maximum fruit set was recorded 63 days after flowering in T₃ (78.50%), while minimum fruit set was noticed in T₄ (41.50%).

5.1.2 Fruit drop (%)

The effect of sprays of different concentrations CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of Pomegranate Cv. Bhagwa indicated that the difference for fruit drop significantly increased per tree. After 21 days of flowering, the maximum fruit set was recorded in T₆ (33.50%) while the minimum fruit drop was noticed in T₃ (12.50%). The maximum fruit drop recorded 42 days after flowering in T₆ (49.00%) while minimum fruit drop was noticed in T₃ (19.00%). The maximum fruit drop recorded in T₆ (58.50%) while minimum fruit drop recorded in T₆ (58.50%) while minimum fruit drop was noticed in T₃ (19.00%).

5.1.3 Fruit yield (kg)

Results on the effect of sprays of different concentrations CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa indicated that the difference for fruit yield was significantly increased per tree. However, the maximum yield Kg/tree was noticed in T₃ (25.49 Kg) while minimum fruit yield in Kg/tree was found in T₅ (16.07 Kg).

5.2 Effect of foliar sprays of different concentrations of CPPU with GA_3 on physical parameters in fruits of pomegranate Cv. Bhagwa

5.2.1. Fruit Weight (g)

The studies on the effect of sprays of different concentrations CPPU (Forchlorofenuron) with GA_3 (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was significant effect of CPPU sprays on fruit weight. At harvest, the maximum fruit weight was recorded in T_3 (301.1 g) however, minimum fruit weight was noticed in T_6 (270.37 g).

5.2.2. Fruit Volume (ml)

Investigation on the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was significant effect of CPPU sprays on fruit volume. At harvest, the maximum fruit volume was recorded in T_4 (270.74 ml). While minimum fruit volume was noticed in T_6 (233.13 ml).

5.2.3. Specific gravity

While the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was no significant effect of CPPU sprays on specific gravity.

At harvest, the maximum specific gravity was recorded in T_4 (1.156) while minimum specific gravity was noticed in T_6 (1.113).

5.2.4 Colour value (L*, a* and b* values)

5.2.4.1. L* value for colour

Observation for the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA_3 (Gibberellic

acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was a significant effect on L* value for colour. Highest L* value for colour was observed in T_1 (51.67) while it was lowest in T_3 (44.49).

5.2.4.2 a* value for colour

While the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was a significant effect on a* value for colour. Highest a* value for colour was observed in T_5 (43.89), and the lowest value for T_4 (38.83).

5.2.4.3 b* value for colour

Investigation on the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was a significant effect on b* value for colour. Highest b* value for colour was observed in in T_3 (16.88) and lowest value for T_4 (12.28).

5.3 Effect of foliar sprays of different concentrations of CPPU with GA_3 on chemical composition of fruit

5.3.1. TSS (°B)

Observation for the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA₃ (Gibberellic

acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was a significant effect of foliar sprays of CPPU on TSS (°B) in pomegranate Cv. Bhagwa fruits. The maximum TSS was recorded in the treatment T_3 (16.05°B) while minimum TSS was recorded in T_6 (14.36°B).

5.3.2 Titratable Acidity (%)

Result on the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was no significant effect foliar sprays of CPPU on the acidity of fruits. The maximum acidity was assessed in T₆ (0.256%) while minimum acidity was in T₃ (0.246 %).

5.3.3 Reducing sugars (%)

The effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was no significant effect foliar sprays of CPPU on reducing sugar content of fruits. It was maximum in T_1 (11.04 %) while minimum in T_5 (9.99 %).

5.3.4 Total sugars (%)

Also the effect of sprays of different concentrations of CPPU (Forchlorofenuron) with GA_3 (Gibberellic acid) on fruit set and post harvest quality of pomegranate Cv. Bhagwa revealed that there was no significant effect of foliar sprays of CPPU on total sugar

content of fruits. Highest total sugar was noted in T_5 (12.03%) while lowest in T_4 (11.03%).

5.4 Sensory evaluation

The highest sensory score for colour (8.22) was noticed in T_4 and the lowest (7.55) was recorded in T_5 . The highest sensory score for flavour (8.17) was noticed in T_3 and lowest (7.5) was observed in T_6 . The highest sensory score for texture (8.13) was recorded in T_3 and the lowest (7.5) was recorded in T_6 . The maximum (8.15) average sensory score for colour, flavour and texture was observed in T_3 and was minimum (7.53) in T_6 .

5.5 Cost of cultivation

As far as the cost of cultivation is concerned, the lowest (Rs. 1343.30) cost per quintal was observed in treatment T_3 and highest (Rs.1978.08) cost per quintal was observed in the treatment T_6 .

The highest yield (218.44 quintals), produce outcome (Rs.1176410) and (Rs. 1343.3) lowest cost per quintal was observed in treatment T_3 which is also superior in overall acceptability over all other treatments.

CONCLUSION

The experiment entitled "Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and postharvest quality of pomegranate *(Punica granatum)* Cv. Bhagwa" results indicated that the fruit set, fruit drop and physico-chemical properties of pomegranate Cv. Bhagwa were influenced by different concentrations of CPPU sprays. Significantly higher fruit set, yield, weight, volume, colour, TSS as well as organoleptic quality of pomegranate Cv. Bhagwa was observed in CPPU sprayed trees over control trees. However, there was no significant difference in terms of specific gravity, acidity, reducing sugar and total sugars of fruits in CPPU treated trees over control trees.

The treatment T_3 i.e. T_1 (10ppm CPPU at flowering) + (30ppm CPPU with 10ppm GA₃) was significantly superior to all other treatment in terms of fruit set, fruit drop, yield, fruit weight, TSS and cost per quintal.

LITERATURE CITED

- *A.O.A.C. (1975). Official Methods of Analysis. Association of Official Analytical Chambers. 13th Edition, Washington, pp 218.
- Abdel-Fattah, M.E., Amen, K.A., Alaa, A.B., Eman, A.A. and Abo zeed, (2010). Effect of berry Thinning, CPPU spraying and pinching on cluster and berry quality of two grapevine cultivars. Assiut J. of Agric. Sci., 40 (4): 92-107.
- Adsule, R.N. and Patil, N.B. (2005). Pomegranate In: Handbook of Fruit Sciences and Technology: Production, Composition, storage and processing; pp.455-464.
- Ahmed, Faissal F. and Abdel, Aal Ahmed M.K. (2007). Effect of concentrations and date of spraying Sitofex (CPUU) on yield and quality of Le-Conte pear fruits. African Crop Science Conference Proceedings, 8: 523-527.
- Al-saif Adel Mohammed H (2011). Effect of plant growth regulators on fruit growth and quality development of Syzygium Samarangense (water apple/wax apple). Thesis submitted to institute of biological science faculty of science university of malaya kuala lumpur.
- *Amerine, M. A., Pangborn, R.M. and Rosseler, E.B. (1965). Principles of Sensory Evaluation of foods. Academic Press. New York. pp. 350-376.
- Anonynous (2015). National Horticulture Board, Govt. of India, Database file. pp. 229.

- Asaad Samia, A. (2014). The influence of spraying sitofex, iron, manganese and zinc on "Anna" apple trees planted on new reclaimed calcareous land. *Life Science Journal, 11 (1s).*
- Bhat, Z. A., Bhat, J. A., Rashid, Rizwan., Rather, J.A. and Haseebur-Rehman, (2012). Impact of New Generation Growth Regulators (BRs and CPPU) on Quality Parameters of Grape CV. Tas-A-Ganesh. VEGETOS, 25 (1): 307-314.
- Costa, G., Succi, F., Quadretti, R., Sfakiotakis, E. and Porlingis, J. (1997). Effect of CPPU and pollination on fruiting performance, fruit quality and storage life if kiwifruit Cv. Hayward. *Acta Hort.*, 444: 467-472.
- Cruz-castillo, J. G., Baldicchi, A., Frioni, T., Marocchi, F., Mostatello, S., Proietti, S., Battistelli, A. and Famiani. F. (2014). Pre-anthesis CPPU low dosage application increases "Hayward" kiwifruit weight without affecting the other qualitative and nutritional characteristics. *Food chemistry*, 158 (2014): 224-228.
- Curry Eric, A. and Greene Dune, W. (1993). Studied CPPU influence fruit quality, Fruit set, return bloom and Pre-harvest drop of Apples. HORT SCIENCE, 28 (2): 115-119.1193.
- Davies, P.J. (1995). Plant Hormones, Physiology, Biochemistry and Molecular Biology. *Kluwer Academic Publishers, Dordrecht.*
- Dhinesh, K. V. and Ramasamy, D. (2016). Pomegranate Processing and Value Addition: Review. *Journal of Food Processing and Technology*, 7:3.
- Faissal, F. Ahmed and Ahmed M. K. Abdel, (2007). Studied Effect of concentrations and date of spraying Sitofex (CPUU) on yield

and quality of Le-Conte pear fruits. *African Crop Science Conference Proceedings, 8: 523-527.*

- Fathi M. A., Azza I. Mohamed and Abd El-Bary A. (2011). Effect of Sitofex (CPPU) and GA3 Spray on fruit set, fruit quality, yield and monetary value of "Costata" Persimmon. Nature and Science, 9 (8).
- Guirguis, N. S., Eman S. Attala and Ali, M. M. (2003). Effect of Sitofex (cppu) on fruit set, fruit quality of Le-conte pear cultivar. Annals of Agric. Sc., Moshtohor, 41 (1): 271-282.
- Han and Lee, (2001). Effects of GA₃, CPPU (N-(2-chloro-pyridyl)-N'phenylurea) and ABA on the fruit quality ISHS Acta Horticulturae 653: <u>IX International Symposium on Plant</u> <u>Bioregulators in Fruit Production.</u>
- Harms Charles, L. and Oplinger Edward, S. (2000). Plant Growth Regulator: Their use in Crop Production. North central Region Extensin Publication.
- Hassan, H. S. A., Mostafa, E. A. M. and Saleh, M. M. S. (2009). Effect of foliar spray with biozyme and Sitofex on yield and fruit characteristics of Grand nain banana. *Green Farming*, 2 (10): 661-663.
- Hayata Yasuyoshi and Niimi Yoshiyuki (1995). Studies that the use of CPPU for promoting fruit set and indues parthenocarpy in water melon. J. Amer. Soc. Hort. Sci., **120** (60): 997-1000.
- *Holland, D., Hatib, K. and Bar-Yaakov, I. (2009). Pomegranate-Botany, horticulture and breeding. *Hort. Rev., (35): 127, 191.*
- Kano, Y. (2003). Effect of GA and CPPU treatments on cell size and t ypes of sugar accumulated in Japanese pear fruit. J. Hort. Sci. and Biotechnol., 78 (3): 331-334.

- Kassem, H. A., Al-Obeed, R. S., and Ahmed, M. A. (2011) Extending harvest season and shelf life and improving quality characters of Barhee dates. AAB Bioflux, 3 (1): 67-75.
- Kassem, H. A., Al-Obeed, R. S., Ahmed, M. A. and Omar, A.K.H. (2011). Productivity, fruit quality and profitability of trees improvement by preharvest application of agro-chemicals. *Middle-east journal of scientific research*, **9** (5): 628-637.
- Khot A.P., Ramteke S.D., Deshmukh M.B., (2015). Significance of foliar spraying with gibberellic acid (40% WSG) and CPPU (1% SP) on yield, quality, leaf photosynthesis and biochemical changes in grapes *International Journal of Tropical Agriculture* © Serials Publications.
- Kim, J.G., Takami, Y., Mizagami, T., Beppu, K., Fukuda, T. and Kataoka, I. (2006). CPPU application on size and quality of hardy Kiwifruit. *Scientia Hort.*, 110: 219-222.
- Kumar Jayant and Thakur Disha (2013). Effect of different concentration of CPPU and fruit thinning on yield and quality of Kiwifruit cv. Allison and Hayward. The asian journal of horticulture, 8 (2): 701-705.
- *Lane, J. H. and Eynon, (1923). Determination of reducing sugars by Fehlings solution and methylene blue as internal indicator. J. Soc. Chem. India., 42: 327.
- Melgarejo P., Martínez J.J., Hernández F., Legua P., Melgarejo-Sánchez P., and Martínez Font R. (2012). The pomegranate tree in the world: its problem and uses. *II International Symposium on the Pomegranate*, 11-26.

- Mohamed Hatem Ben, Zrig Ahlem, Khemira Habib (2013). Effect of date of spraying CPPU (sitofex) on fruit quality of "Meski" table grapes. Food 7 (1): 41-43.
- Mok DWS and Mok MC. (2001). Cytokinin metabolism and action. Annu. Rev. Plant. Biol., 52: 89-118.
- Mousawinejad Safieh, Nahandi Fariborz Zaree, and Baghalzadeh Azita (2014). Effects of CPPU on size and quality of tomato (Solanum lycopersicum L.) fruits. International Journal of Farming and Allied Sciences, **3** (8): 930-934.
- *Nickell, L.G. 1985. New plant growth regulator increases grape size. *Proc. Plant Growth Regulat. Soc. Amer. 12:1-7.*
- *Notodimedjo, S. (1999). Effect of GA3, NAA and CPPU on fruit retention, yield and quality of mango (CV. Arumanis) in east Java. *Acta Hortic.*, 509: 587-600.
- *Panse, V.G. and P.V.Sukhatme (1985). Statistical methods for agricultural workers. Published by I.C.A.R., New Delhi.
- Paranjape, M. M. (2015). on "Effect of CPPU (Forchlorofenuron) on fruit set and post harvest quality of Mango Cv. Alphonso" Thesis submitted to Post Graduate Institute of Post Harvest Management, Killa-Roha.
- Patterson, K.J., Mason, K.A. and Gould, K.S. (1993). Effects of CPPU (N-(2-chloro-4-pyridyl)-N'-phenylurea) on fruit growth,maturity, and storage quality of kiwifruit, New Zealand Journal of Crop and Horticultural Science, **21** (3): 253-261.
- Pramanick, K. K., Shukla, A. K., Kumar, J. and Watpade Santosh (2015). Effects of bioregulator, summer and winter pruning and nutrient spray on fruit and yield of kiwi fruit. *International Journal of Tropical Agriculture*, **33** (2): 1033-1038.

- Rafeeker, M., Nair, S.A., Sorte, P.N., Hatwal, G.P., and Chandhan, P.N., (2002). Effect of growth regulators on growth and yield of summer cucumber. J. Soils Crops, **12** (1): 108-110.
- Ranganna S. (1986). Handbook of analysis and quality control for fruit and vegetable products second edition. Tata Mc. Graw hill Publishing Compony Ltd., New Delhi.
- Retamales, Jorge, B., Gustavo A. Lobos, Sebastián Romero, Ricardo Godoy, and Claudia Moggia (2014). Repeated applications of CPPU on highbush blueberry cv. Duke increase yield and enhance fruit quality at harvest and during postharvest. *Chilean Journal of Agriculture Research, 74 (2).*
- Sasaki Katsuaki and Utsunomiya Naoki (2012). Studied Effect of Combined Application of CPPU and GA₃ on the Growth of 'Irwin' Mango Fruits". Japanese Journal of Tropical Agriculture.
- Sevda, S. B. and Rodrigues, L. (2011). The making of pomegranate wine using yeast immobilized sodium alginate. *African Journal of Food Science*, (5): 299-304.
- Smith Rhonda (2008). The use of CPPU in wine grapes to increased fruit set. UC co operative extention Sonoma country, 133 aviation blvd, suite 109, santa rosa, ca 94503: 1-4.
- Stern, R. A., Ben Arie, R., Applebaum, S., Flaishman, M. (2002). CPPU and BA increase fruit size of 'Royal Gala' (Malus domestica) apple in a warm climate. *Journal of Horticultural Science and Biotechnology*, **78** (3).
- Subhadrabandhu Suranant and Iamsub Kusol (1996). "Effect of CPPU (1-(2-chloro-4-pyridyl)-3-phenylurea) on fruit setting of

mango (Mangifera indica L.) Cv. "Nam Dok Mai". Kasetsart Journal.

- Susila T., Reddy Amarender, Rajkumar M., Padmaja and Rao P.V. (2013). Studies that on exogenous application of CPPU and Ga3 on yield, fruit quality character and seedless ness in watermelon. World journal of agriculture sciences, 9 (2): 132-136,201.
- Zabadal Thomas J. and Bukovac Martin J. (2006). Effect of CPPU on fruit Development of selected seedless and seeded Grape cultivars. *Hort. Science*, **41** (1): 154-157.
- Zilkah S., David I., Yeselson Y., Tamir M., and Winer L. (1995). Increasing 'hass' avocado fruit size by CPPU and GA₃ application. *Proceedings of the world avocado congress III*, pp. 11-18.

*Orignal not seen

APPENDIX I

Weekly Weather Data Sangamner,

From September 2015 to March 2016

	Тетре	rature (°C)	Relative Humidity (%)		
Period	Max.	Min.	Max.	Min.	
03.09 - 9.09	33.3	23.1	81	55	
10.09 – 16.09	32.3	21.8	79	58	
17.09 - 23.09	30.2	22.6	79	59	
24.09 - 30.09	33.5	19.8	68	41	
01.10 - 07.10	32.8	21.0	76	50	
08.10 - 14.10	34.2	20.9	72	39	
15.10 - 21.10	35.0	19.1	57	30	
22.10 - 28.10	34.7	20.8	59	36	
29.10 - 04.11	32.1	17.7	57	37	
05.11 - 11.11	32.9	17.3	58	38	
12.11 - 18.11	32.4	14.6	50	30	
19.11 – 25.11	30.1	17.9	71	59	
26.11 - 02.12	31.7	17.8	70	44	
03.12 - 09.12	31.6	13.9	57	33	
10.12 - 16.12	32.3	15.9	49	33	
17.12 - 23.12	31.1	13.7	64	36	
24.12 - 31.12	32.9	9.4	45	25	
01.01 - 07.01	31.4	11.6	47.3	26.4	
08.01 - 14.01	30.3	11.8	47.3	27	
15.01 - 21.01	28.7	11.8	59.4	30.4	
22.01 - 28.01	29.4	9.3	46.6	22.4	
29.01 - 04.02	33.5	12.0	47	25	

05.02 - 11.02	32.4	13.04	53.6	24.3
12.02 - 18.02	32.8	14.9	64.1	27.1
19.02 - 25.02	35.0	17.5	52.6	23.6
26.02 - 04.03	35.1	18.7	57.4	30.9
05.03 - 11.03	34.5	17.1	51.4	21.9
12.03 - 18.03	35.9	17.3	40.9	19.9
19.03 - 25.03	37.01	18.8	34.9	17.3
26.03 - 31.03	38.9	19.5	34.5	19.2

APPENDIX II

Abbreviations used

SR.NO.	ABBREVIATIONS	MEANING
1	%	Per cent
2	@	At the rate of
3	/	Per
4	A.O.A.C	Association of Official Analytical Chemist
5	Anon.	Anonymous
6	⁰ Brix	Degree Brix
7	⁰ C	Degree centigrade
8	C.D.	Critical difference
9	Cv.	Cultivar
10	Cm	Centimeter
11	et al.	And others
12	etc.	et cetera (and so on)
13	RBD	Randomized block Design
14	Fig.	Figure
15	g	Gram
16	Hrs	Hours
17	ha.	Hectare
18	i.e.	id est. (That is)
19	Kg	Kilogram
20	Ltd.	Limited
21	Mm	Millimeter
23	M. S.	Maharashtra State
24	µg/100g	Micro gram per 100 grams
25	MI	Milliliter
26	NS	Non-significant
27	Ppm	Part per million

28	Pvt.	Private
29	RH	Relative humidity
30	S.Em.	Standard error of mean
31	Std.	Standard
32	TSS	Total soluble solids
33	Т	Treatment
34	viz.,	Videlicet (Namely)
35	Wt.	Weight
36	Ppm	Part per million

<u>VITAE</u>

ANMOL SHANKARRAO KHEMNAR

A candidate for the degree of

M.Sc. (Post Harvest Management)

Title of thesis

.

Effect of CPPU (Forchlorofenuron) with GA₃ (Gibberellic acid) on fruit set and post harvest quality of pomegranate (*Punica granatum*) Cv. Bhagwa

Major FieldPost Harvest Management of Fruit Vegetable and Flower Crops

Biographical Information

-**Personal data**Born at Shrirampur, Ahmednagar on 18 August 1992 Son of shri.Shankarrao Hanumnat Khemnar

-Education

Attended secondary school at Vidya PrabhodhiniPrashala, Sakur.Higher secondary school at Rajashri Shahu Mahavidyalay, Latur.Received the Bachelor's Degree in Agriculture in First class,From the K.K.WAGHCollege Of Agriculture, Nasik, Dist-Nasik,in 2014.